Skip to main content

Geographic Information Systems (GIS) and Natural Hazards

  • Reference work entry
  • First Online:
Encyclopedia of Natural Hazards

Definitions

Geographic Information Systems (GIS). GIS is a computer-based information system designed for capturing, storing, analyzing, managing, and displaying spatial data representing human and natural phenomena from the real world. It may include application to remote sensing, land surveying, mathematics, and geography.

Natural Hazard. Any natural phenomenon that poses a threat to human life or properties.

Introduction

Natural hazards include geological (e.g., earthquakes and landslides) and meteorological events such as cyclones, tornadoes, hailstorms, floods, droughts, and wildfires (Chen et al., 2003). Natural hazards are deeply linked to the concepts of magnitude, geographical location, and time recurrencewhich denote intensity, place of potential occurrence, and frequency of the natural phenomenon, respectively. Since many factors can play an important role in the occurrence of a natural disaster and their spatial information is crucial to risk assessment and management,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Armanini, A., Fraccarollo, L., and Rosatti, G., 2009. Two-dimensional simulation of debris flows in erodible channels. Computer & Geosciences, 35, 993–1006, doi:10.1016/j.cageo.2007.11.008.

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H., and Ugawa, N., 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1, 73–81.

    Article  Google Scholar 

  • Ballesteros-Cánovas, J. A., Díez-Herrero, A., and Bodoque, J. M., 2012. Searching for useful non-systematic tree-ring data sources for flood hazard analysis using GIS tools. Catena, 92, 130–138.

    Article  Google Scholar 

  • Berti, M., and Simoni, A., 2007. Prediction of debris flow inundation area using empirical mobility relationship. Geomorphology, 90, 144–161, doi:10.1016/j.geomorph.2007.01.014.

    Article  Google Scholar 

  • Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I., and Rinaldo, A., 2008. On the space-time evolution of a cholera epidemic. Water Resources Research, 44, W01424, doi:10.1029/2007WR006211.

    Article  Google Scholar 

  • Bhuiyan, C., Singh, R. P., and Kogan, F. N., 2006. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289–302.

    Article  Google Scholar 

  • Borga, M., Dalla Fontana, G., and Cazorzi, F., 2002. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. Journal of Hydrology, 268, 56–71.

    Article  Google Scholar 

  • Brardinoni, F., Slaymaker, O., and Hassan, M. A., 2003. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology, 54, 179–196.

    Article  Google Scholar 

  • Bulmer, M. H., Petley, D. N., Murphy, W., and Mantovani, F., 2006. Detecting slope deformation using two-pass differential interferometry: implications for landslide studies on earth and other planetary bodies. Journal of Geophysical Research, 111, E06S16, doi:10.1029/2005JE002593.

    Article  Google Scholar 

  • Carrara, A., Crosta, G., and Frattini, P., 2008. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94, 353–378.

    Article  Google Scholar 

  • Castrillón, M., Jorge, P. A., López, I. J., Macías, A., Martín, D., Nebot, R. J., Sabbagh, I., Quintana, F. M., Sánchez, J., Sánchez, A. J., Suárez, J. P., and Trujillo, A., 2011. Forecasting and visualization of wildfires in a 3D geographical information system. Computers and Geosciences, 37(3), 390–396.

    Article  Google Scholar 

  • Cavalli, M., and Marchi, L., 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Sciences, 8(2), 323–333.

    Article  Google Scholar 

  • Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G., 2008. The effectiveness of airborne LiDAR data in the recognition of channel bed morphology. Catena, 73, 249–260.

    Article  Google Scholar 

  • Cavalli, M., and Tarolli, P., 2011. Application of lidar technology for river analysis. Italian Journal of Engineering Geology and Environment, Special Issue, 1, 33–44, doi:10.4408/IJEGE.2011-01.S-03.

    Google Scholar 

  • Chang, K.-T., Chiang, S.-H., and Hsu, M.-L., 2007. Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression original research article. Geomorphology, 89(3–4), 335–347.

    Article  Google Scholar 

  • Chen, K., Blong, R., and Jacobson, C., 2001. MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling and Software, 16(4), 387–397.

    Article  Google Scholar 

  • Chen, K., Blong, R., and Jacobson, C., 2003. Towards an integrated approach to natural hazards risk assessment using GIS: with reference to bushfires. Environmental Management, 31(4), 546–560.

    Article  Google Scholar 

  • Crosta, G. B., and Frattini, P., 2003. Distributed modelling of shallow landslide triggered by intense rainfall. Natural Hazards and Earth System Sciences, 3, 81–93.

    Article  Google Scholar 

  • Cubellis, E., Carlino, S., Iannuzzi, R., Luongom, G., and Obrizzo, F., 2004. Management of historical seismic data using GIS: the Island of Ischia (Southern Italy). Natural Hazards, 33, 379–393.

    Article  Google Scholar 

  • Czuchlewski, K. R., Weissel, J. K., and Kim, Y., 2003. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research, 108(F1), 7.1–7.11.

    Article  Google Scholar 

  • Demirkesen, A. C., Evrendilek, F., Berberoglu, S., and Kilic, S., 2006. Coastal flood risk analysis using Landsat-7 ETM imagery and SRTM DEM: a case study of Izmir, Turkey. Environmental Monitoring and Assessment, 131, 293–300.

    Article  Google Scholar 

  • Desprats, J. F., Garcin, M., Attanayake, N., Pedreros, R., Siriwardana, C., Fontaine, M., Fernando, S., and De Silva, U., 2010. A “coastal-hazard gis” for sri lanka. Journal of Coastal Conservation, 14(1), 21–31, doi:10.1007/s11852-009-0084-5.

    Article  Google Scholar 

  • Dietrich, W.E., Bellugi, D. and Real de Asua, R. 2001. Validation of the shallow landslide model SHALSTAB for forest management. In M.S. Wigmosta and S.J. Burges (eds.), Land Use and Watersheds: Human influence on hydrology and geomorphology in urban and forest areas. American Geophysical Union, Water Science and Application, vol. 2, pp. 195–227.

    Google Scholar 

  • Felpeto, A., Martí, J., and Ortiz, R., 2007. Automatic GIS-based system for volcanic hazard assessment. Journal of Volcanology and Geothermal Research, 166, 106–116.

    Article  Google Scholar 

  • Fernández, D. S., and Lutz, M. A., 2012. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111, 90–98.

    Article  Google Scholar 

  • Gamper, C., Thöni, M., and Weck-Hannemann, H., 2006. A conceptual approach to the use of cost benefit and multi criteria analysis in natural hazard management. Natural Hazards and Earth System Sciences, 6(2), 293–302.

    Article  Google Scholar 

  • Gaspar, J. L., Goulart, C., Queiroz, G., Silveira, D., and Gomes, A., 2004. Dynamic structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Natural Hazards and Earth System Sciences, 4(2), 233–242.

    Article  Google Scholar 

  • Gitis, V., Derendyaev, A., Metrikov, P., and Shogin, A., 2012. Network geoinformation technology for seismic hazard research. Natural Hazards, 62(3), 1021–1036, doi:10.1007/s11069-012-0132-6.

    Google Scholar 

  • Gomez-Fernandez, F., 2000. Application of a GIS algorithm to delimit the areas protected against basic lava flow invasion on Tenerife Island. Journal of Volcanology and Geothermal Research, 103(1–4), 409–423.

    Article  Google Scholar 

  • Guzzetti, F., and Tonelli, G., 2004. Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Natural Hazards and Earth System Sciences, 4, 213–232.

    Article  Google Scholar 

  • Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P., 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73, 229–245.

    Article  Google Scholar 

  • Guzzetti, F., Stark, C. P., and Salvati, P., 2005. Evaluation of flood and landslide risk to the population in Italy. Environmental Mangement, 36(1), 15–36.

    Google Scholar 

  • Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M., 2006. Estimating the quality of landslide susceptibility models. Geomorphology, 81, 166–184.

    Article  Google Scholar 

  • Guzzetti, F., Mondini, A., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.-T, 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66, doi:10.1016/j.earscirev.2012.02.001.

    Article  Google Scholar 

  • Hammond, C. J., Prellwitz, R. W., and Miller, S. M., 1992. Landslides hazard assessment using Monte Carlo simulation. In Bell, D.H. (ed.) Proceedings of 6th International Symposium on Landslides, Christchurch, New Zealand, Balkema, 2, pp. 251–294.

    Google Scholar 

  • Hanafi-Bojd, A. A., Vatandoost, H., Oshaghi, M. A., Charrahy, Z., Haghdoost, A. A., Zamani, G., Abedi, F., Sedaghat, M. M., Soltani, M., Shahi, M., and Raeisi, A., 2012. Spatial analysis and mapping of malaria risk in an endemic area, south of Iran: a GIS based decision making for planning of control. Acta Tropica, 121, 85–92.

    Article  Google Scholar 

  • Hao, L., Zhang, X., and Liu, S., 2012. Risk assessment to China’s agricultural drought disaster in county unit. Natural Hazards, 61, 785–801, doi:10.1007/s11069-011-0066-4.

    Article  Google Scholar 

  • He, Y. P., Xie, H., Cui, P., Wei, F. Q., Zhong, D. L., and Gardner, J. S., 2003. GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environmental Geology, 45, 286–293.

    Article  Google Scholar 

  • Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., and Rocca, F., 2004. Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304, 1952–1955, doi:10.1126/science.1098821.

    Article  Google Scholar 

  • Ho, L. T. K., and Umitsu, M., 2011. Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data. Applied Geography, 31(3), 1082–1093.

    Article  Google Scholar 

  • Hong, Y., Adler, R., and Huffman, G., 2007. Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43, 245–256.

    Article  Google Scholar 

  • Horritt, M. S., and Bates, P. D., 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology, 253, 239–249.

    Article  Google Scholar 

  • Horritt, M. S., Mason, D. C., and Luckman, A. J., 2001. Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22(13), 2489–2507.

    Article  Google Scholar 

  • Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B., 2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3, 647–662.

    Article  Google Scholar 

  • Hürlimann, M., Rickenmann, D., Medina, V., and Bateman, A., 2008. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102, 152–163.

    Article  Google Scholar 

  • Islam, M. M., and Sado, K., 2000. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrological Processes, 14, 605–620.

    Article  Google Scholar 

  • Iverson, R. M., Schilling, S. P., and Vallance, J. W., 1998. Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), 972–984.

    Article  Google Scholar 

  • Kappes, M. S., Gruber, K., Frigerio, S., Bell, R., Keiler, M., and Glade, T., 2012. The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology, 151–152, 139–155.

    Article  Google Scholar 

  • Kasai, M., Ikeda, M., Asahina, T., and Fujisawa, K., 2009. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113, 57–69.

    Article  Google Scholar 

  • Kiage, L. M., Walker, N. D., Balasubramanian, S., Babin, A., and Barras, J., 2005. Applications of radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. International Journal of Remote Sensing, 26, 5359–5380.

    Article  Google Scholar 

  • Krishnamurthy, P. K., Fisher, J. B., and Johnson, C., 2011. Mainstreaming local perceptions of hurricane risk into policymaking: a case study of community GIS in Mexico. Global Environmental Change, 21(1), 143–153.

    Article  Google Scholar 

  • Lastra, J., Fernández, E., Díez-Herrero, A., and Marquínez, J., 2008. Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Natural Hazards, 45, 277–293, doi:10.1007/s11069-007-9164-8.

    Article  Google Scholar 

  • Lei, X., Wang, Y., Liao, W., Jiang, Y., Tian, Y., and Wang, H., 2011. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS. Computers and Geosciences, 37(9), 1476–1489.

    Article  Google Scholar 

  • Løvholt, F., Glimsdal, S., Harbitz, C. B., Zamora, N., Nadim, F., Peduzzi, P., Dao, H., and Smebye, H., 2012. Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 110, 58–73.

    Article  Google Scholar 

  • Malczewski, J., 2006. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Article  Google Scholar 

  • Martinelli, F., and Meletti, C., 2008. A WebGIS application for rendering seismic hazard data in Italy. Seismological Res Lett, 79(1), 68–78.

    Article  Google Scholar 

  • Matgen, P., Schumann, G., Henry, J.-B., Hoffmann, L., and Pfister, L., 2007. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. International Journal of Applied Earth Observation and Geoinformation, 9, 247–263.

    Article  Google Scholar 

  • McKean, J., and Roering, J., 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.

    Article  Google Scholar 

  • Medina, V., Hurlimann, M., and Bateman, A., 2007. Application of FLATModel, a 2D finite volume code to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127–142, doi:10.1007/s10346-007-0102-3.

    Article  Google Scholar 

  • Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., and Ardizzone, F., 2011. Semi-automatic recognition and mapping of rainfall induced shallow landslides using satellite optical images. Remote Sensing of Environment, 115(7), 1743–1757, doi:10.1016/j.rse. 2011.03.006.

    Article  Google Scholar 

  • Montgomery, D. R., and Dietrich, W. E., 1994. A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153–1171.

    Article  Google Scholar 

  • Nappi, R., Alessio, G., Bronzino, G., Terranova, C., and Vilardo, G., 2008. Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (Southern Apennines): an example of application to the Sannio-area. Natural Hazards, 45(1), 73–85.

    Article  Google Scholar 

  • Nath, S. K., 2005. An initial model of seismic microzonation of Sikkim Himalaya through thematic mapping and GIS integration of geological and strong motion features. Journal of Asian Earth Sciences, 25(2), 329–343.

    Google Scholar 

  • Nichol, J. E., Shaker, A., and Wong, M. S., 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 76, 68–75.

    Article  Google Scholar 

  • Núñez, J. H., Verbist, K., Wallis, J. R., Schaefer, M. G., Morales, L., and Cornelis, W. M., 2011. Regional frequency analysis for mapping drought events in north-central Chile. Journal of Hydrology, 405(3–4), 352–366.

    Article  Google Scholar 

  • Pack, R. T., Tarboton, D. G., and Goodwin, C. N., 1998. The SINMAP Approach to Terrain Stability Mapping, 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada.

    Google Scholar 

  • Pal, I., Nath, S. K., Shukla, K., Pal, D. K., Raj, A., Thingbaijam, K. K. S., and Bansal, B. K., 2008. Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Natural Hazards, 45, 333–377.

    Article  Google Scholar 

  • Pareschi, M. T., Cavarra, L., Favalli, M., Giannini, F., and Meriggi, A., 2000. GIS and volcanic risk management. Natural Hazards, 21(2–3), 361–379.

    Article  Google Scholar 

  • Pessina, V., and Meroni, F., 2009. A WebGis tool for seismic hazard scenarios and risk analysis. Soil Dynamics and Earthquake Engineering, 29, 1274–1281.

    Article  Google Scholar 

  • Plate, E. J., 2002. Flood risk and flood management. Journal of Hydrology, 267, 2–11.

    Article  Google Scholar 

  • Prokesova, R., Kardos, M., and Medvedova, A., 2010. Landslide dynamics from high resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology, 115, 90–101.

    Article  Google Scholar 

  • Quattrocchi, F., Pik, R., Pizzino, L., Guerra, M., Scarlato, P., Angelone, M., Barbieri, M., Conti, A., Marty, B., Sacchi, E., Zuppi, G. M., and Lombardi, S., 2000. Geochemical changes at the Bagni di Triponzo thermal spring during the Umbria-Marche 1997–1998 seismic sequence. Journal of Seismology, 4(4), 567–587.

    Article  Google Scholar 

  • Rashed, T., and Weeks, J., 2003. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. International Journal of Geographical Information Science, 17, 547–576.

    Article  Google Scholar 

  • Reese, S., Bell, R., and King, A., 2007. RiskScape: a new tool for comparing risk from natural hazards. Water & Atmosphere, 15, 24–25.

    Google Scholar 

  • Renschler, C. S., 2005. Scales and uncertainties in using models and GIS for volcano hazard prediction. Journal of Volcanology and Geothermal Research, 139, 73–87.

    Article  Google Scholar 

  • Roering, J. J., Stimely, L. L., Mackey, B. H., and Schmidt, D. A., 2009. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophysical Research Letters, 36, L19402, doi:10.1029/2009GL040374.

    Article  Google Scholar 

  • Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A., and Peruccacci, S., 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114(3), 129–142.

    Article  Google Scholar 

  • Rott, H., 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography, 33, 769–791.

    Article  Google Scholar 

  • Salvi, S., Quattrocchi, F., Brunori, C. A., Doumaz, F., Angelone, M., Billi, A., Buongiorno, F., Funiciello, R., Guerra, M., Mele, G., Pizzino, L., and Salvini, F., 1999. A multidisciplinary approach to earthquake research: implementation of a geochemical geographic information system for the Gargano site, Southern Italy. Natural Hazards, 20(1), 255–278.

    Article  Google Scholar 

  • Scheidl, C., and Rickenmann, D., 2010. Empirical prediction of debris flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35, 157–173, doi:10.1002/esp. 1897.

    Google Scholar 

  • Schneider, P., and Schauer, B., 2006. HAZUS — its development and its future. Natural Hazards Review, 7, 40–44.

    Article  Google Scholar 

  • Schumann, G., Di Baldassarre, G., and Bates, P. D., 2009. The utility of spaceborne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2801–2807.

    Article  Google Scholar 

  • Selcuk, A. S., and Yucemen, M. S., 2000. Reliability of lifeline networks with multiple sources under seismic hazard. Natural Hazards, 21, 1–18.

    Article  Google Scholar 

  • Selcuk-Kestel, A. S., Duzgun, H. S., and Oduncuoglu, L., 2012. A GIS-based software for lifeline reliability analysis under seismic hazard. Computers and Geosciences, 42, 37–46.

    Article  Google Scholar 

  • Shahid, S., and Behrawan, H., 2008. Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46, 391–413, doi:10.1007/s11069-007-9191-5.

    Article  Google Scholar 

  • Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Airborne Laser Swath Mapping: achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34, L23S10, doi:10.1029/2007GL031939.

    Article  Google Scholar 

  • Steiniger, S., and Bocher, E., 2009. An overview on current free and open source desktop GIS developments. International Journal of Geographical Information Science, 23(10), 1345–1370, doi:10.1080/13658810802634956.

    Article  Google Scholar 

  • Stephens, E. M., Bates, P. D., Freer, J. E., and Mason, D. C., 2012. The impact of uncertainty in satellite data on the assessment of flood inundation models. Journal of Hydrology, 414–415, 162–173.

    Article  Google Scholar 

  • Stolz, A., and Huggel, C., 2008. Debris flows in the Swiss National Park: the influence of different flow models and varying DEM grid size in modelling results. Landslides, 5, 311–319, doi:10.1007/s10346-008-0125-4.

    Article  Google Scholar 

  • Tarolli, P., and Tarboton, D. G., 2006. A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping. Hydrology and Earth System Science, 10, 663–677.

    Article  Google Scholar 

  • Tarolli, P., Arrowsmith, J. R., and Vivoni, E. R., 2009. Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology, 113, 1–3.

    Article  Google Scholar 

  • Tarolli, P., Borga, M., Chang, K.T., and Chiang, S.H., 2011. Modeling shallow landsliding susceptibility by incorporating heavy rainfall statistical properties. Geomorphology, 133, 199–211, doi:10.1016/j.geomorph.2011.02.033.

    Article  Google Scholar 

  • Tarolli, P., Sofia, G., and Dalla Fontana, G., 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards, 61, 65–83, doi:10.1007/s11069-010-9695-2.

    Article  Google Scholar 

  • Tarquini, S., and Favalli, M., 2011. Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna. Journal of Volcanology and Geothermal Research, 204(1–4), 27–39.

    Article  Google Scholar 

  • Toyos, G. P., Cole, P. D., Felpeto, A., and Martí, J., 2007. A GIS-based methodology for hazard mapping of small pyroclastic density currents. Natural Hazards, 41(1), 99–112.

    Article  Google Scholar 

  • Tropeano, D., and Turconi, L., 2004. Using historical documents for landslide. Debris flow and stream flood prevention. Applications in Northern Italy. Natural Hazards, 31(3), 663–679.

    Article  Google Scholar 

  • Umitsu, M., Hiramatsu, T., and Tanavud, C., 2006. Research on the flood and micro landforms of the Hat Yai plain, southern Thailand with SRTM data and GIS. Transaction, Japanese Geomorphological Union, 27(2), 205–219.

    Google Scholar 

  • Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Van Beek, L. P. H., and Vandekerckhove, L., 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32, 754–769.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., 2007. Evaluating the impact of drought using remote sensing in a mediterranean, semi-arid region. Natural Hazards, 40, 173–208, doi:10.1007/s11069-006-0009-7.

    Article  Google Scholar 

  • Wang, Y., Colby, J. D., and Mulcahy, K. A., 2002. An efficient method for mapping flood extent in a coastal flood using Landsat TM and DEM data. International Journal of Remote Sensing, 23(18), 3681–3696.

    Article  Google Scholar 

  • Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A., 2004. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslide, 1, 61–66.

    Article  Google Scholar 

  • Xia, J., Falconer, R. A., Lin, B., and Tan, G., 2011. Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environmental Modelling and Software, 26(8), 987–998.

    Article  Google Scholar 

  • Yang, B., Madden, M., Kim, J., and Jordan, T. R., 2012. Geospatial analysis of barrier island beach availability to tourists. Tourism Management, 33(4), 840–854.

    Article  Google Scholar 

  • Zerger, A., 2002. Examining GIS decision utility for natural hazard risk modelling. Environmental Modelling and Software, 17, 287–294.

    Article  Google Scholar 

  • Zolfaghari, M. R., 2009. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment. Computers and Geosciences, 35, 1460–1469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tarolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tarolli, P., Cavalli, M. (2013). Geographic Information Systems (GIS) and Natural Hazards. In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_152

Download citation

Publish with us

Policies and ethics