Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Geographic Information Systems (GIS) and Natural Hazards

  • Paolo Tarolli
  • Marco Cavalli
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_152


Geographic Information Systems (GIS). GIS is a computer-based information system designed for capturing, storing, analyzing, managing, and displaying spatial data representing human and natural phenomena from the real world. It may include application to remote sensing, land surveying, mathematics, and geography.

Natural Hazard. Any natural phenomenon that poses a threat to human life or properties.


Natural hazards include geological (e.g., earthquakes and landslides) and meteorological events such as cyclones, tornadoes, hailstorms, floods, droughts, and wildfires (Chen et al., 2003). Natural hazards are deeply linked to the concepts of magnitude, geographical location, and time recurrencewhich denote intensity, place of potential occurrence, and frequency of the natural phenomenon, respectively. Since many factors can play an important role in the occurrence of a natural disaster and their spatial information is crucial to risk assessment and management,...

This is a preview of subscription content, log in to check access.


  1. Armanini, A., Fraccarollo, L., and Rosatti, G., 2009. Two-dimensional simulation of debris flows in erodible channels. Computer & Geosciences, 35, 993–1006, doi:10.1016/j.cageo.2007.11.008.CrossRefGoogle Scholar
  2. Ayalew, L., Yamagishi, H., and Ugawa, N., 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1, 73–81.CrossRefGoogle Scholar
  3. Ballesteros-Cánovas, J. A., Díez-Herrero, A., and Bodoque, J. M., 2012. Searching for useful non-systematic tree-ring data sources for flood hazard analysis using GIS tools. Catena, 92, 130–138.CrossRefGoogle Scholar
  4. Berti, M., and Simoni, A., 2007. Prediction of debris flow inundation area using empirical mobility relationship. Geomorphology, 90, 144–161, doi:10.1016/j.geomorph.2007.01.014.CrossRefGoogle Scholar
  5. Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I., and Rinaldo, A., 2008. On the space-time evolution of a cholera epidemic. Water Resources Research, 44, W01424, doi:10.1029/2007WR006211.CrossRefGoogle Scholar
  6. Bhuiyan, C., Singh, R. P., and Kogan, F. N., 2006. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289–302.CrossRefGoogle Scholar
  7. Borga, M., Dalla Fontana, G., and Cazorzi, F., 2002. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. Journal of Hydrology, 268, 56–71.CrossRefGoogle Scholar
  8. Brardinoni, F., Slaymaker, O., and Hassan, M. A., 2003. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology, 54, 179–196.CrossRefGoogle Scholar
  9. Bulmer, M. H., Petley, D. N., Murphy, W., and Mantovani, F., 2006. Detecting slope deformation using two-pass differential interferometry: implications for landslide studies on earth and other planetary bodies. Journal of Geophysical Research, 111, E06S16, doi:10.1029/2005JE002593.CrossRefGoogle Scholar
  10. Carrara, A., Crosta, G., and Frattini, P., 2008. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94, 353–378.CrossRefGoogle Scholar
  11. Castrillón, M., Jorge, P. A., López, I. J., Macías, A., Martín, D., Nebot, R. J., Sabbagh, I., Quintana, F. M., Sánchez, J., Sánchez, A. J., Suárez, J. P., and Trujillo, A., 2011. Forecasting and visualization of wildfires in a 3D geographical information system. Computers and Geosciences, 37(3), 390–396.CrossRefGoogle Scholar
  12. Cavalli, M., and Marchi, L., 2008. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Sciences, 8(2), 323–333.CrossRefGoogle Scholar
  13. Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G., 2008. The effectiveness of airborne LiDAR data in the recognition of channel bed morphology. Catena, 73, 249–260.CrossRefGoogle Scholar
  14. Cavalli, M., and Tarolli, P., 2011. Application of lidar technology for river analysis. Italian Journal of Engineering Geology and Environment, Special Issue, 1, 33–44, doi:10.4408/IJEGE.2011-01.S-03.Google Scholar
  15. Chang, K.-T., Chiang, S.-H., and Hsu, M.-L., 2007. Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression original research article. Geomorphology, 89(3–4), 335–347.CrossRefGoogle Scholar
  16. Chen, K., Blong, R., and Jacobson, C., 2001. MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling and Software, 16(4), 387–397.CrossRefGoogle Scholar
  17. Chen, K., Blong, R., and Jacobson, C., 2003. Towards an integrated approach to natural hazards risk assessment using GIS: with reference to bushfires. Environmental Management, 31(4), 546–560.CrossRefGoogle Scholar
  18. Crosta, G. B., and Frattini, P., 2003. Distributed modelling of shallow landslide triggered by intense rainfall. Natural Hazards and Earth System Sciences, 3, 81–93.CrossRefGoogle Scholar
  19. Cubellis, E., Carlino, S., Iannuzzi, R., Luongom, G., and Obrizzo, F., 2004. Management of historical seismic data using GIS: the Island of Ischia (Southern Italy). Natural Hazards, 33, 379–393.CrossRefGoogle Scholar
  20. Czuchlewski, K. R., Weissel, J. K., and Kim, Y., 2003. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research, 108(F1), 7.1–7.11.CrossRefGoogle Scholar
  21. Demirkesen, A. C., Evrendilek, F., Berberoglu, S., and Kilic, S., 2006. Coastal flood risk analysis using Landsat-7 ETM imagery and SRTM DEM: a case study of Izmir, Turkey. Environmental Monitoring and Assessment, 131, 293–300.CrossRefGoogle Scholar
  22. Desprats, J. F., Garcin, M., Attanayake, N., Pedreros, R., Siriwardana, C., Fontaine, M., Fernando, S., and De Silva, U., 2010. A “coastal-hazard gis” for sri lanka. Journal of Coastal Conservation, 14(1), 21–31, doi:10.1007/s11852-009-0084-5.CrossRefGoogle Scholar
  23. Dietrich, W.E., Bellugi, D. and Real de Asua, R. 2001. Validation of the shallow landslide model SHALSTAB for forest management. In M.S. Wigmosta and S.J. Burges (eds.), Land Use and Watersheds: Human influence on hydrology and geomorphology in urban and forest areas. American Geophysical Union, Water Science and Application, vol. 2, pp. 195–227.Google Scholar
  24. Felpeto, A., Martí, J., and Ortiz, R., 2007. Automatic GIS-based system for volcanic hazard assessment. Journal of Volcanology and Geothermal Research, 166, 106–116.CrossRefGoogle Scholar
  25. Fernández, D. S., and Lutz, M. A., 2012. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111, 90–98.CrossRefGoogle Scholar
  26. Gamper, C., Thöni, M., and Weck-Hannemann, H., 2006. A conceptual approach to the use of cost benefit and multi criteria analysis in natural hazard management. Natural Hazards and Earth System Sciences, 6(2), 293–302.CrossRefGoogle Scholar
  27. Gaspar, J. L., Goulart, C., Queiroz, G., Silveira, D., and Gomes, A., 2004. Dynamic structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Natural Hazards and Earth System Sciences, 4(2), 233–242.CrossRefGoogle Scholar
  28. Gitis, V., Derendyaev, A., Metrikov, P., and Shogin, A., 2012. Network geoinformation technology for seismic hazard research. Natural Hazards, 62(3), 1021–1036, doi:10.1007/s11069-012-0132-6.Google Scholar
  29. Gomez-Fernandez, F., 2000. Application of a GIS algorithm to delimit the areas protected against basic lava flow invasion on Tenerife Island. Journal of Volcanology and Geothermal Research, 103(1–4), 409–423.CrossRefGoogle Scholar
  30. Guzzetti, F., and Tonelli, G., 2004. Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Natural Hazards and Earth System Sciences, 4, 213–232.CrossRefGoogle Scholar
  31. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P., 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73, 229–245.CrossRefGoogle Scholar
  32. Guzzetti, F., Stark, C. P., and Salvati, P., 2005. Evaluation of flood and landslide risk to the population in Italy. Environmental Mangement, 36(1), 15–36.Google Scholar
  33. Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M., 2006. Estimating the quality of landslide susceptibility models. Geomorphology, 81, 166–184.CrossRefGoogle Scholar
  34. Guzzetti, F., Mondini, A., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.-T, 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66, doi:10.1016/j.earscirev.2012.02.001.CrossRefGoogle Scholar
  35. Hammond, C. J., Prellwitz, R. W., and Miller, S. M., 1992. Landslides hazard assessment using Monte Carlo simulation. In Bell, D.H. (ed.) Proceedings of 6th International Symposium on Landslides, Christchurch, New Zealand, Balkema, 2, pp. 251–294.Google Scholar
  36. Hanafi-Bojd, A. A., Vatandoost, H., Oshaghi, M. A., Charrahy, Z., Haghdoost, A. A., Zamani, G., Abedi, F., Sedaghat, M. M., Soltani, M., Shahi, M., and Raeisi, A., 2012. Spatial analysis and mapping of malaria risk in an endemic area, south of Iran: a GIS based decision making for planning of control. Acta Tropica, 121, 85–92.CrossRefGoogle Scholar
  37. Hao, L., Zhang, X., and Liu, S., 2012. Risk assessment to China’s agricultural drought disaster in county unit. Natural Hazards, 61, 785–801, doi:10.1007/s11069-011-0066-4.CrossRefGoogle Scholar
  38. He, Y. P., Xie, H., Cui, P., Wei, F. Q., Zhong, D. L., and Gardner, J. S., 2003. GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environmental Geology, 45, 286–293.CrossRefGoogle Scholar
  39. Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., and Rocca, F., 2004. Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304, 1952–1955, doi:10.1126/science.1098821.CrossRefGoogle Scholar
  40. Ho, L. T. K., and Umitsu, M., 2011. Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data. Applied Geography, 31(3), 1082–1093.CrossRefGoogle Scholar
  41. Hong, Y., Adler, R., and Huffman, G., 2007. Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43, 245–256.CrossRefGoogle Scholar
  42. Horritt, M. S., and Bates, P. D., 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology, 253, 239–249.CrossRefGoogle Scholar
  43. Horritt, M. S., Mason, D. C., and Luckman, A. J., 2001. Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22(13), 2489–2507.CrossRefGoogle Scholar
  44. Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B., 2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3, 647–662.CrossRefGoogle Scholar
  45. Hürlimann, M., Rickenmann, D., Medina, V., and Bateman, A., 2008. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102, 152–163.CrossRefGoogle Scholar
  46. Islam, M. M., and Sado, K., 2000. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrological Processes, 14, 605–620.CrossRefGoogle Scholar
  47. Iverson, R. M., Schilling, S. P., and Vallance, J. W., 1998. Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), 972–984.CrossRefGoogle Scholar
  48. Kappes, M. S., Gruber, K., Frigerio, S., Bell, R., Keiler, M., and Glade, T., 2012. The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology, 151–152, 139–155.CrossRefGoogle Scholar
  49. Kasai, M., Ikeda, M., Asahina, T., and Fujisawa, K., 2009. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113, 57–69.CrossRefGoogle Scholar
  50. Kiage, L. M., Walker, N. D., Balasubramanian, S., Babin, A., and Barras, J., 2005. Applications of radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. International Journal of Remote Sensing, 26, 5359–5380.CrossRefGoogle Scholar
  51. Krishnamurthy, P. K., Fisher, J. B., and Johnson, C., 2011. Mainstreaming local perceptions of hurricane risk into policymaking: a case study of community GIS in Mexico. Global Environmental Change, 21(1), 143–153.CrossRefGoogle Scholar
  52. Lastra, J., Fernández, E., Díez-Herrero, A., and Marquínez, J., 2008. Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Natural Hazards, 45, 277–293, doi:10.1007/s11069-007-9164-8.CrossRefGoogle Scholar
  53. Lei, X., Wang, Y., Liao, W., Jiang, Y., Tian, Y., and Wang, H., 2011. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS. Computers and Geosciences, 37(9), 1476–1489.CrossRefGoogle Scholar
  54. Løvholt, F., Glimsdal, S., Harbitz, C. B., Zamora, N., Nadim, F., Peduzzi, P., Dao, H., and Smebye, H., 2012. Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 110, 58–73.CrossRefGoogle Scholar
  55. Malczewski, J., 2006. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.CrossRefGoogle Scholar
  56. Martinelli, F., and Meletti, C., 2008. A WebGIS application for rendering seismic hazard data in Italy. Seismological Res Lett, 79(1), 68–78.CrossRefGoogle Scholar
  57. Matgen, P., Schumann, G., Henry, J.-B., Hoffmann, L., and Pfister, L., 2007. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. International Journal of Applied Earth Observation and Geoinformation, 9, 247–263.CrossRefGoogle Scholar
  58. McKean, J., and Roering, J., 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.CrossRefGoogle Scholar
  59. Medina, V., Hurlimann, M., and Bateman, A., 2007. Application of FLATModel, a 2D finite volume code to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127–142, doi:10.1007/s10346-007-0102-3.CrossRefGoogle Scholar
  60. Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., and Ardizzone, F., 2011. Semi-automatic recognition and mapping of rainfall induced shallow landslides using satellite optical images. Remote Sensing of Environment, 115(7), 1743–1757, doi:10.1016/j.rse. 2011.03.006.CrossRefGoogle Scholar
  61. Montgomery, D. R., and Dietrich, W. E., 1994. A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153–1171.CrossRefGoogle Scholar
  62. Nappi, R., Alessio, G., Bronzino, G., Terranova, C., and Vilardo, G., 2008. Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (Southern Apennines): an example of application to the Sannio-area. Natural Hazards, 45(1), 73–85.CrossRefGoogle Scholar
  63. Nath, S. K., 2005. An initial model of seismic microzonation of Sikkim Himalaya through thematic mapping and GIS integration of geological and strong motion features. Journal of Asian Earth Sciences, 25(2), 329–343.Google Scholar
  64. Nichol, J. E., Shaker, A., and Wong, M. S., 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 76, 68–75.CrossRefGoogle Scholar
  65. Núñez, J. H., Verbist, K., Wallis, J. R., Schaefer, M. G., Morales, L., and Cornelis, W. M., 2011. Regional frequency analysis for mapping drought events in north-central Chile. Journal of Hydrology, 405(3–4), 352–366.CrossRefGoogle Scholar
  66. Pack, R. T., Tarboton, D. G., and Goodwin, C. N., 1998. The SINMAP Approach to Terrain Stability Mapping, 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada.Google Scholar
  67. Pal, I., Nath, S. K., Shukla, K., Pal, D. K., Raj, A., Thingbaijam, K. K. S., and Bansal, B. K., 2008. Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Natural Hazards, 45, 333–377.CrossRefGoogle Scholar
  68. Pareschi, M. T., Cavarra, L., Favalli, M., Giannini, F., and Meriggi, A., 2000. GIS and volcanic risk management. Natural Hazards, 21(2–3), 361–379.CrossRefGoogle Scholar
  69. Pessina, V., and Meroni, F., 2009. A WebGis tool for seismic hazard scenarios and risk analysis. Soil Dynamics and Earthquake Engineering, 29, 1274–1281.CrossRefGoogle Scholar
  70. Plate, E. J., 2002. Flood risk and flood management. Journal of Hydrology, 267, 2–11.CrossRefGoogle Scholar
  71. Prokesova, R., Kardos, M., and Medvedova, A., 2010. Landslide dynamics from high resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology, 115, 90–101.CrossRefGoogle Scholar
  72. Quattrocchi, F., Pik, R., Pizzino, L., Guerra, M., Scarlato, P., Angelone, M., Barbieri, M., Conti, A., Marty, B., Sacchi, E., Zuppi, G. M., and Lombardi, S., 2000. Geochemical changes at the Bagni di Triponzo thermal spring during the Umbria-Marche 1997–1998 seismic sequence. Journal of Seismology, 4(4), 567–587.CrossRefGoogle Scholar
  73. Rashed, T., and Weeks, J., 2003. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. International Journal of Geographical Information Science, 17, 547–576.CrossRefGoogle Scholar
  74. Reese, S., Bell, R., and King, A., 2007. RiskScape: a new tool for comparing risk from natural hazards. Water & Atmosphere, 15, 24–25.Google Scholar
  75. Renschler, C. S., 2005. Scales and uncertainties in using models and GIS for volcano hazard prediction. Journal of Volcanology and Geothermal Research, 139, 73–87.CrossRefGoogle Scholar
  76. Roering, J. J., Stimely, L. L., Mackey, B. H., and Schmidt, D. A., 2009. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophysical Research Letters, 36, L19402, doi:10.1029/2009GL040374.CrossRefGoogle Scholar
  77. Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A., and Peruccacci, S., 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114(3), 129–142.CrossRefGoogle Scholar
  78. Rott, H., 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography, 33, 769–791.CrossRefGoogle Scholar
  79. Salvi, S., Quattrocchi, F., Brunori, C. A., Doumaz, F., Angelone, M., Billi, A., Buongiorno, F., Funiciello, R., Guerra, M., Mele, G., Pizzino, L., and Salvini, F., 1999. A multidisciplinary approach to earthquake research: implementation of a geochemical geographic information system for the Gargano site, Southern Italy. Natural Hazards, 20(1), 255–278.CrossRefGoogle Scholar
  80. Scheidl, C., and Rickenmann, D., 2010. Empirical prediction of debris flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35, 157–173, doi:10.1002/esp. 1897.Google Scholar
  81. Schneider, P., and Schauer, B., 2006. HAZUS — its development and its future. Natural Hazards Review, 7, 40–44.CrossRefGoogle Scholar
  82. Schumann, G., Di Baldassarre, G., and Bates, P. D., 2009. The utility of spaceborne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2801–2807.CrossRefGoogle Scholar
  83. Selcuk, A. S., and Yucemen, M. S., 2000. Reliability of lifeline networks with multiple sources under seismic hazard. Natural Hazards, 21, 1–18.CrossRefGoogle Scholar
  84. Selcuk-Kestel, A. S., Duzgun, H. S., and Oduncuoglu, L., 2012. A GIS-based software for lifeline reliability analysis under seismic hazard. Computers and Geosciences, 42, 37–46.CrossRefGoogle Scholar
  85. Shahid, S., and Behrawan, H., 2008. Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46, 391–413, doi:10.1007/s11069-007-9191-5.CrossRefGoogle Scholar
  86. Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Airborne Laser Swath Mapping: achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34, L23S10, doi:10.1029/2007GL031939.CrossRefGoogle Scholar
  87. Steiniger, S., and Bocher, E., 2009. An overview on current free and open source desktop GIS developments. International Journal of Geographical Information Science, 23(10), 1345–1370, doi:10.1080/13658810802634956.CrossRefGoogle Scholar
  88. Stephens, E. M., Bates, P. D., Freer, J. E., and Mason, D. C., 2012. The impact of uncertainty in satellite data on the assessment of flood inundation models. Journal of Hydrology, 414–415, 162–173.CrossRefGoogle Scholar
  89. Stolz, A., and Huggel, C., 2008. Debris flows in the Swiss National Park: the influence of different flow models and varying DEM grid size in modelling results. Landslides, 5, 311–319, doi:10.1007/s10346-008-0125-4.CrossRefGoogle Scholar
  90. Tarolli, P., and Tarboton, D. G., 2006. A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping. Hydrology and Earth System Science, 10, 663–677.CrossRefGoogle Scholar
  91. Tarolli, P., Arrowsmith, J. R., and Vivoni, E. R., 2009. Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology, 113, 1–3.CrossRefGoogle Scholar
  92. Tarolli, P., Borga, M., Chang, K.T., and Chiang, S.H., 2011. Modeling shallow landsliding susceptibility by incorporating heavy rainfall statistical properties. Geomorphology, 133, 199–211, doi:10.1016/j.geomorph.2011.02.033.CrossRefGoogle Scholar
  93. Tarolli, P., Sofia, G., and Dalla Fontana, G., 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards, 61, 65–83, doi:10.1007/s11069-010-9695-2.CrossRefGoogle Scholar
  94. Tarquini, S., and Favalli, M., 2011. Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna. Journal of Volcanology and Geothermal Research, 204(1–4), 27–39.CrossRefGoogle Scholar
  95. Toyos, G. P., Cole, P. D., Felpeto, A., and Martí, J., 2007. A GIS-based methodology for hazard mapping of small pyroclastic density currents. Natural Hazards, 41(1), 99–112.CrossRefGoogle Scholar
  96. Tropeano, D., and Turconi, L., 2004. Using historical documents for landslide. Debris flow and stream flood prevention. Applications in Northern Italy. Natural Hazards, 31(3), 663–679.CrossRefGoogle Scholar
  97. Umitsu, M., Hiramatsu, T., and Tanavud, C., 2006. Research on the flood and micro landforms of the Hat Yai plain, southern Thailand with SRTM data and GIS. Transaction, Japanese Geomorphological Union, 27(2), 205–219.Google Scholar
  98. Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Van Beek, L. P. H., and Vandekerckhove, L., 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32, 754–769.CrossRefGoogle Scholar
  99. Vicente-Serrano, S. M., 2007. Evaluating the impact of drought using remote sensing in a mediterranean, semi-arid region. Natural Hazards, 40, 173–208, doi:10.1007/s11069-006-0009-7.CrossRefGoogle Scholar
  100. Wang, Y., Colby, J. D., and Mulcahy, K. A., 2002. An efficient method for mapping flood extent in a coastal flood using Landsat TM and DEM data. International Journal of Remote Sensing, 23(18), 3681–3696.CrossRefGoogle Scholar
  101. Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A., 2004. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslide, 1, 61–66.CrossRefGoogle Scholar
  102. Xia, J., Falconer, R. A., Lin, B., and Tan, G., 2011. Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environmental Modelling and Software, 26(8), 987–998.CrossRefGoogle Scholar
  103. Yang, B., Madden, M., Kim, J., and Jordan, T. R., 2012. Geospatial analysis of barrier island beach availability to tourists. Tourism Management, 33(4), 840–854.CrossRefGoogle Scholar
  104. Zerger, A., 2002. Examining GIS decision utility for natural hazard risk modelling. Environmental Modelling and Software, 17, 287–294.CrossRefGoogle Scholar
  105. Zolfaghari, M. R., 2009. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment. Computers and Geosciences, 35, 1460–1469.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Land, Environment, Agriculture and Forestry, University of PadovaLegnaroItaly
  2. 2.National Research Council – Research Institute for Geo-Hydrological ProtectionPadovaItaly