Skip to main content

Zeta potential

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

A charged colloidal particle suspended in an aqueous solution develops an electrical double layer that is dependent upon solution and particle characteristics. Imposition of an electric field in a suspension allows the visualization of the particle charge as these materials migrate towards the electrodes. Figure Z1 shows a schematic diagram of a negatively charged particle suspended in electrolyte solution. The particle is migrating in response to an imposed electric field. As this particle migrates the highly structured water and ions near the particle moves with the particle.

Figure Z1
figure 1_644

A representation of a negatively charge colloid suspended in electrolyte solution migrating toward the positive electrode. The zone of rapidly changing viscosity defines the shear zone and the location of the zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Attard, P., Antelmi, D., and Larson, I., 2000. Comparison of the zeta potential with the diffuse layer potential from charge titration. Langmuir, 16: 1542–1552.

    Article  CAS  Google Scholar 

  • Bolt, G.N., 1955. Analysis of the validity of the Gouy–Chapman theory of the electric double layer. J. Colloid Sci., 10: 206–218.

    Article  CAS  Google Scholar 

  • Bousse, L., Mostarshed, S., van der Shoot, B., Rooij, N.F., and Göpel, W., 1991. Zeta potential measurements of Ta 2O 5 and SiO 2 thin films. J. Colloid. Interface Sci., 147: 22–32.

    Article  CAS  Google Scholar 

  • Carnie, S.L., and Torrie, G.M., 1984. The statistical mechanics of the electrical double layer. Adv. Chem. Phys., 56: 141–253.

    CAS  Google Scholar 

  • Davis, J.A., and Kent, D.B., 1990. Surface complex modeling in aqueous geochemistry, In Hochella, Jr., M.F., and White, A.F., eds., Rev. Mineral. 23: Mineral–Water Interface Chemistry. Washington, DC. Mineralogical Society of America, Chapter 5. pp. 177–260.

    Google Scholar 

  • Delgado, A., Gonzalez-Caballero, F., and Bruque, J.M., 1986. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. J. Colloid. Interface Sci., 113: 203–211.

    Article  CAS  Google Scholar 

  • Dzombak, D.A., and Morel, F.M.M., 1990. Surface Complex Modeling, Hydrous Ferric Oxide. New York: Wiley.

    Google Scholar 

  • Goff, J.R., and Luner, P., 1984. Measurement of colloid mobility by laser Doppler electrophoresis: the effect of salt concentration on particle mobility. J. Colloid Interface Sci., 99: 468–483.

    Article  CAS  Google Scholar 

  • Grahame, D.C., 1947. The electrical double layer and the theory of electrocapillarity. Chem. Rev., 41: 441–501.

    Article  CAS  Google Scholar 

  • Harsh, J.B., and Xu, S., 1990. Microelectrophoresis applied to the surface chemistry of clay minerals. Adv. Soil Sci., 14: 131–165.

    Article  Google Scholar 

  • Hayes, K.F., Redden, G., Ela, W., Leckie, J.O., 1991. Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J. Colloid Interface Sci., 142: 448–469.

    Article  CAS  Google Scholar 

  • Hunter, R.J., 1981. Zeta Potential in Colloid Science. Principles and Applications. New York: Academic Press, p. 386.

    Google Scholar 

  • Jenny, H., and Reitemeier, R.F., 1935. Ionic exchange in relation to the stability of colloidal systems. J. Phys. Chem., 39: 593–604.

    Article  CAS  Google Scholar 

  • Kruyt, H.R., 1952. General introduction, Chapter I. In Kruyt, H.R., ed., Colloid Science. Amsterdam, The Netherlands. Elsevier, pp. 1–57.

    Google Scholar 

  • Martín-Molina, A., Quesada-Pérez, M., Galisteo-González, F., and Hidalgo-Álvarez, 2003. Looking into overcharging in model colloids through electrophoresis: asymmetric electrolytes. J. Chem. Phys. 118: 4183–4189.

    Article  Google Scholar 

  • Mattson, S., 1928. The electrokinetic and chemical behavior of the alumino-silicates. Soil Sci., 25: 289–311.

    Article  CAS  Google Scholar 

  • Mattson, S., 1929. The laws of soil colloidal behavior: II. Cataphoresis, flocculation and dispersion. Soil Sci., 28: 373–409.

    Article  CAS  Google Scholar 

  • Mattson, S., 1931. The laws of colloidal behavior: VI. Amphoteric behavior. Soil Sci., 32: 343–365.

    Article  CAS  Google Scholar 

  • McFadyen, P., 1987. Electrophoretic mobility and zeta potential of colloidal particles. Am. Lab., Apr: 64–75.

    Google Scholar 

  • Miller, M.P., and Berg, J.C., 1991. A comparison of electroacoustic and microelectrophoretic zeta potential data for titania in the absence and presence of a poly(vinyl alcohol) adlayer. Colloid Surface, 59: 119–128.

    Article  CAS  Google Scholar 

  • O'Brien, R.W., and White, L.R., 1978. Electrophoretic mobility of a spherical colloidal particle. J. Chem Soc. Faraday Trans. II., 74: 1607–1627.

    Article  Google Scholar 

  • van Olphen, H., 1977. An Introduction to Clay Colloidal Chemistry, 2nd edn. New York: Wiley.

    Google Scholar 

  • Overbeek, J.Th.G., 1952. Electrokinetic phenomena, Chapter V. In Kruyt, H.R., ed., Colloid Science. Amsterdam, The Netherlands: Elsevier, pp. 194–244.

    Google Scholar 

  • Sasaki, H., Muramatsu, A., Arakatsu, H., and Usui, S., 1991. ζ potential measurement by means of the plane interface technique. J. Colloid Interface Sci., 142: 266–271.

    Article  CAS  Google Scholar 

  • Sennett, P., and Oliver, J.P., 1965. Colloidal dispersions electrokinetic effects and the concept of zeta potential. In Ross, S., ed., The Chemistry and Physics of Interfaces. Washington, DC: ACS.

    Google Scholar 

  • Shaw, D.J., 1969. Electrophoresis. New York: Academic Press.

    Google Scholar 

  • Sposito, G., 1984. The Surface Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Stigter, D., 1975. Electrophoresis, Chapter 20. In van Olphen, H., and Mysels, K.J., eds., Physical Chemistry: Enriching Topics from Colloid and Surface Science. La Jolla, CA: Theorex, pp. 293–307.

    Google Scholar 

  • Thompson, R.G., 1992. Practical zeta potential determination using electrophoretic light scattering. Am. Lab., Aug: 48–53.

    Google Scholar 

  • Wiklander, L., 1964. Cation and anion exchange phenomena, Chapter 4. In Bear, F.E., ed., Chemistry of the Soil, 2nd edn. New York: Rehinhold Publishing Company, pp. 163–205.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Zasoski, R.J. (2008). Zeta potential. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_644

Download citation

Publish with us

Policies and ethics