Skip to main content

Soil‐root interface

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

During its life cycle the plant releases a wide variety of compounds from its roots. The composition of these compounds, known as root exudates, varies widely and includes, in addition to organic moieties of low molecular weight, inorganic ions, gases, protons and electrons, a mucilagenous substance mainly formed by uronic acid polymers and polysaccharides (Rovira et al., 1983; Uren and Reisenauer, 1988).

The mucilage mixed with material of microbiological origin envelopes the apical regions of the root in a gelatinous layer. Its distribution is somewhat variable depending on several factors such as plant species, age, environmental conditions etc. This gelatinous layer, which constitutes the soil‐root interface, plays a fundamental role in plant nutrition (Jenny and Grossenbacher, 1963). Being highly hydrated, it ensures effective contact between the root system and the soil surfaces, facilitating exchange processes, transfer of water and nutrients, and the growth of the root. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Crowley, D.E.,Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J., 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants, Plant and Soil 130, 179–198.

    Article  CAS  Google Scholar 

  • Deiana, S., Gessa, C., Piu, P., and Seeber, R., 1991. Iron(III) reduction by D‐galacturonic acid. Part III. Influence of the presence of additional metal ions and of 2‐amino‐2‐deoxy‐D‐gluconic acid. J. Chem. Soc. Dalton Trans., 1237–1241.

    Google Scholar 

  • Deiana, S., Gessa, C., Marchetti, M., and Usai, M., 1995. Phenolic acid redox properties: pH influence on iron(III) reduction by caffeic acid. Soil Sci. Soc. Am. J., 59: 1301–1307.

    Article  CAS  Google Scholar 

  • Deiana, S., Manunza, B., Palma, A., Premoli, A., and Gessa, C., 2001. Interaction and mobilization of metal ions at the soil–root interface. In Gobran, G.R., Wenzel, W., and Lombi, E., eds., Trace Elements in the Rhizosphere. Boca Raton, FL: CRC Press, pp. 127–148.

    Google Scholar 

  • Deiana, S., Gessa, C., Palma, A., Premoli, A., and Senette, C., 2003a. Influence of organic acids exuded by plants on the interaction of copper with the polysaccharidic components of the root mucilages. Org. Geochem., 34: 651–660.

    Article  CAS  Google Scholar 

  • Deiana, S., Premoli, A., Senette, C., Gessa, C., and Marzadori, C., 2003b. Role of uronic acid polymers on the availability of iron to plants. J. Plant Nutr., 26: 1927–1941.

    Article  CAS  Google Scholar 

  • Didier, M., Pellet, M., Grunes, D.L., and Kochian, L.V., 1995. Organic acid exudation as an aluminum‐tolerance mechanism in maize (Zea mais). Planta, 196: 788–795.

    Article  Google Scholar 

  • Floyd, R.A., and Ohlrogge, A.J., 1970. Gel formation on nodal root surfaces of Zea mais. Investigation on the gel composition. Plant Soil, 33: 341–343.

    Article  Google Scholar 

  • Fusuo, Z., Romheld, V., and Marschner, H., 1989. Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. Z. Pflanzen. Bodenk., 152: 205–210.

    Article  Google Scholar 

  • Gessa, C., and Deiana, S., 1991a. Ca‐polygalacturonate as a model for soil–root interface II: fribrillar structure and comparison with natural root mucilages. Plant Soil, 140: 1–13.

    Article  Google Scholar 

  • Gessa, C., and Deiana, S., 1991b. Role of soil–root interface in mobilization of nutrients and their absorption by plants. Trends Soil Sci., 1: 307–313.

    Google Scholar 

  • Gessa, C., De Cherchi, M.L., Dessi, A., Deiana, S., and Micera, G., 1983. The reduction of Fe(III) to Fe(II) and V(V) to V(IV) by polygalacturonic acid: a reduction and complexation mechanism of biochemical significance. Inorg. Chim. Acta, 80: L53–L55.

    Article  CAS  Google Scholar 

  • Gessa, C., Deiana, S., Premoli, A., and Ciurli, S., 1997. Redox activity of caffeic acid towars iron(III) complexed in a polygalacturonic networt. Planta Soil, 190: 289–299.

    Article  CAS  Google Scholar 

  • Mimmo, T., Marzadori, C., Francioso, O., Deiana, S., and Gessa, C., 2003. Effects of aluminum sorption on a Ca‐polygalacturonate network used as a soil–root interface model. Biopolymers (Biospectroscopy) 70: 655–661.

    Article  CAS  Google Scholar 

  • Grayston, S.J., Vaughn, D., and Jones, D., 1996. Rhizosphere carbon flow in trees in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol., 5: 29–56.

    Article  Google Scholar 

  • Jenny, H., and Grossenbacher, K., 1963. Root–soil boundary zones as seen in the electron microscope. Soil Sci. Am. Proc., 27: 273–277.

    Article  Google Scholar 

  • Jones, D.L., 1998. Organic acids in the rhizosphere: a critical review. Plant Soil, 205: 25–44.

    Article  CAS  Google Scholar 

  • Leppard, G.G., 1974. Rhizoplane fibrils in wheat: demonstration and derivation. Science, 185: 1066–1067.

    Article  CAS  Google Scholar 

  • Manunza, B., Deiana, S., and Gessa, C., 1999. Molecular dynamics of pectic substances. In Balbuena, P.B., and Seminario, J.M., eds., Molecular Dynamics: From Classical to Quantum Methods. Theor. Comput. Chem., 7: 899–932.

    Google Scholar 

  • Marschner, H., Romheld, V., Horst, W.J., and Martin, P., 1986. Root induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z. Pflanzen. Bodenk., 149: 441–456.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S., and Leppard, G.G., 1977. Fibrillar pectin and contact cation exchange at the root surfaces. J. Theor. Biol., 66: 527–540.

    Article  CAS  Google Scholar 

  • Romheld, V., 1987. Existence of two different strategies for the acquisition of iron in higher plants. In Winkelmann, G., Van der Helm, D., and Neilands, J.B., eds., Iron Transport in Animals, Plants, and Microorganisms. Weinheim: VCH Chemie, pp. 353–374.

    Google Scholar 

  • Rovira, A.D., Bowen, G.D., and Foster, R.C., 1983. The significance of rhizosphere microflora and mycorrhizas in plant nutrition. In: Lauchli, A., and Bielesky, R.L., Encyclopedia of Plant Physiology, Vol. 15A. Berlin: Springer, pp. 61–93.

    Google Scholar 

  • Uren, N.C., and Reisenauer, H.M., 1988. The role of root exudates on nutrient acquisition. Adv. Plant Nutr., 3: 79–114

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Gupta, R.K. et al. (2008). Soil‐root interface. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_561

Download citation

Publish with us

Policies and ethics