Skip to main content

Waterborne Plant Viruses of Importance in Agriculture

  • Reference work entry
  • First Online:
Infectious Diseases
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC, part of Springer Nature 2022

Glossary

Aphids :

Insects of the order Hemiptera

Contraseason :

Opposite to the normal season trend

Cucurbits :

General definition for members of the family Cucurbitaceae that includes economically important species including cucumber (Cucumis sativus) and melon (Cucumis melo L)

Debris :

The remains of natural material

Host-switching :

The evolutionary change of the host-specificity of a pathogen

Metagenomics :

The study of a collection of genetic material from a mixed community of organisms

Phytoviruses :

General definition for plant viruses

Resistant-breaking virus :

Viruses capable of infecting new hosts as a result host-range expansion from mutations

Virome :

The assemblage of viruses that is investigated and described by metagenomics sequencing

Virulent :

Term used to describe the degree of pathogenicity caused by a virus

Viruliferous :

Virus-carrying, especially of insects that infest edible crops

Definition of the Subject

Water-mediated transmission of plant viruses represents a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Hirsch J, Moury B (2021) Cucumber mosaic virus (Bromoviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 371–382

    Chapter  Google Scholar 

  2. Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci 11:1092

    Article  Google Scholar 

  3. Jones RAC, Naidu RA (2019) Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol 6(1):387–409

    Article  CAS  Google Scholar 

  4. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12(9):938–954

    Article  CAS  Google Scholar 

  5. Elena SF, Fraile A, García-Arenal F (2014) Evolution and emergence of plant viruses. Adv Virus Res 88:161–191

    Article  Google Scholar 

  6. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307

    Article  Google Scholar 

  7. Gray SM (2008) Aphid transmission of plant viruses. Curr Protoc Microbiol 16:B.1.1–B.1.10

    Google Scholar 

  8. Herrbach E, Chesnais Q (2021) Vector transmission of plant viruses. In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 106–115

    Chapter  Google Scholar 

  9. Ng JC, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  CAS  Google Scholar 

  10. Pinheiro PV, Wilson JR, Xu Y, Zheng Y, Rebelo AR, Fattah-Hosseini S, Kruse A, Dos Silva RS, Xu Y, Kramer M, Giovannoni J, Fei Z, Gray S, Heck M (2019) Plant viruses transmitted in two different modes produce differing effects on small RNA-mediated processes in their aphid vector. Phytobiomes J 3(1):71–81

    Article  Google Scholar 

  11. Zhou JS, Drucker M, Ng JC (2018) Direct and indirect influences of virus-insect vector-plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 33:129–136

    Article  Google Scholar 

  12. Andika IB, Kondo H, Sun L (2016) Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots. Front Microbiol 7:1458

    Article  Google Scholar 

  13. Roberts AG (2014) Plant viruses: soil-borne. In: eLS. Wiley, Hoboken

    Google Scholar 

  14. Gibbs MJ, Weiller GF (1999) Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci U S A 96(14):8022–8027

    Article  CAS  Google Scholar 

  15. Mollentze N, Babayan SA, Streicker DG (2021) Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol 19(9):e3001390

    Article  CAS  Google Scholar 

  16. Mehle N, Gutierrez-Aguirre I, Kutnjak D, Ravnikar M (2018) Water-mediated transmission of plant, animal, and human viruses. Adv Virus Res 101:85–128

    Article  Google Scholar 

  17. Tomlinson JA, Faithfull EM, Flewett TH, Beards G (1982) Isolation of infective tomato bushy stunt virus after passage through the alimentary tract of man. Nature 300:637–638

    Google Scholar 

  18. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y (2006) RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 4(1):e3

    Google Scholar 

  19. Van der Vlugt RA, Stijger CCMM (2008) Pepinomosaic virus. In B. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (3rd ed.), pp. 103–108). Elsevier

    Google Scholar 

  20. Campbell RN, Wipf-Scheibel C, Lecoq H (1996) Vector-assisted seed transmission of melon necrotic spot virus in melon. Phytopathology 86:1294–1298

    Google Scholar 

  21. Rubino L, Scheets K (2021) Tombusviruses (Tombusviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 788–796

    Chapter  Google Scholar 

  22. Jeżewska M, Zarzyńska-Nowak A, Trzmiel K (2018b) Detection of infectious tobamoviruses in irrigation and drainage canals in Greater Poland. J Plant Protect Res 58(2):202–205

    Google Scholar 

  23. Büttner C, Nienhaus F (1989) Virus contamination of waters in two forest districts of the Rhineland area (FRG). Eur J For Pathol 19(4):206–211

    Article  Google Scholar 

  24. Piazzolla P, Castellano MA, De Stradis A (1986) Presence of plant viruses in some rivers of Southern Italy. J Phytopathol 116(3):244–246

    Article  Google Scholar 

  25. Bačnik K, Kutnjak D, Pecman A, Mehle N, Tušek Žnidarič M, Gutiérrez Aguirre I, Ravnikar M (2020) Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment. Water Res 177:115628

    Article  Google Scholar 

  26. Jeżewska M, Trzmiel K, Zarzyńska-Nowak A (2018a) Detection of infectious Brome mosaic virus in irrigation ditches and draining strands in Poland. Eur J Plant Pathol 153:1–8

    Google Scholar 

  27. Adriaenssens EM, Farkas K, Harrison C, Jones DL, Allison HE, McCarthy AJ (2018) Viromic analysis of wastewater input to a river catchment reveals a diverse assemblage of RNA viruses. mSystems 3(3):e00025

    Article  CAS  Google Scholar 

  28. Aw TG, Howe A, Rose JB (2014) Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J Virol Methods 210:15–21

    Article  CAS  Google Scholar 

  29. Fernandez-Cassi X, Timoneda N, Martínez-Puchol S, Rusiñol M, Rodriguez-Manzano J, Figuerola N, Bofill-Mas S, Abril JF, Girones R (2018) Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. Sci Total Environ 618:870–880

    Article  CAS  Google Scholar 

  30. Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M (2009) Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 11(11):2806–2820

    Article  CAS  Google Scholar 

  31. Symonds E, Rosario K, Breitbart M (2019) Pepper mild mottle virus: agricultural menace turned effective tool for microbial water quality monitoring and assessing (waste)water treatment technologies. PLoS Pathog 15:e1007639

    Article  CAS  Google Scholar 

  32. Kitajima M, Sassi HP, Torrey JR (2018) Pepper mild mottle virus as a water quality indicator. npj Clean Water 1(1):19

    Article  CAS  Google Scholar 

  33. Symonds EM, Nguyen KH, Harwood VJ, Breitbart M (2018) Pepper mild mottle virus: a plant pathogen with a greater purpose in (waste)water treatment development and public health management. Water Res 144:1–12

    Article  CAS  Google Scholar 

  34. White KA (2021) Tombusvirus-Like Viruses (Tombusviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 778–787

    Chapter  Google Scholar 

  35. Adams MJ, Adkins S, Bragard C, Gilmer D, Li D, MacFarlane SA, Wong S-M, Melcher U, Ratti C, Ryu KH, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Virgaviridae. J Gen Virol 98(8):1999–2000

    Article  CAS  Google Scholar 

  36. Savenkov EI (2021) Virgaviruses (Virgaviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 839–851

    Chapter  Google Scholar 

  37. Melcher U, Lewandowski DJ, Dawson WO (2021) Tobamoviruses (Virgaviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 734–742

    Chapter  Google Scholar 

  38. Kitajima M, Iker BC, Pepper IL, Gerba CP (2014) Relative abundance and treatment reduction of viruses during wastewater treatment processes – identification of potential viral indicators. Sci Total Environ 488–489:290–296

    Article  Google Scholar 

  39. Schmitz BW, Kitajima M, Campillo ME, Gerba CP, Pepper IL (2016) Virus reduction during advanced Bardenpho and conventional wastewater treatment processes. Environ Sci Technol 50(17):9524–9532

    Article  CAS  Google Scholar 

  40. Tandukar S, Sherchan S, Haramoto E (2020a) Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Sci Rep 10:60547

    Article  Google Scholar 

  41. Tandukar S, Sherchan SP, Haramoto E (2020b) Reduction of human enteric and indicator viruses at a wastewater treatment plant in Southern Louisiana, USA. Food Environ Virol 12(3):260–263

    Article  CAS  Google Scholar 

  42. Betancourt WQ, Kitajima M, Wing AD, Regnery J, Drewes JE, Pepper IL, Gerba CP (2014) Assessment of virus removal by managed aquifer recharge at three full-scale operations. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(14):1685–1692

    Article  CAS  Google Scholar 

  43. Bivins A, Crank K, Greaves J, North D, Wu Z, Bibby K (2020) Cross-assembly phage and pepper mild mottle virus as viral water quality monitoring tools – potential, research gaps, and way forward. Curr Opin Environ Sci Health 16:54–61

    Article  Google Scholar 

  44. Hamza IA, Jurzik L, Uberla K, Wilhelm M (2011) Evaluation of pepper mild mottle virus, human picobirnavirus and Torque teno virus as indicators of fecal contamination in river water. Water Res 45(3):1358–1368

    Article  CAS  Google Scholar 

  45. Shrestha S, Shrestha S, Shindo J, Sherchand JB, Haramoto E (2018) Virological quality of irrigation water sources and pepper mild mottle virus and tobacco mosaic virus as index of pathogenic virus contamination level. Food Environ Virol 10(1):107–120

    Article  Google Scholar 

  46. Betancourt WQ, Schijven J, Regnery J, Wing A, Morrison CM, Drewes JE, Gerba CP (2019) Variable non-linear removal of viruses during transport through a saturated soil column. J Contam Hydrol 223:103479

    Article  CAS  Google Scholar 

  47. Bujarski JJ (2021) Bromoviruses (Bromoviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 260–267

    Chapter  Google Scholar 

  48. Bujarski J, Gallitelli D, García-Arenal F, Pallás V, Palukaitis P, Reddy MK, Wang A, ICTV Report Consortium (2019) ICTV virus taxonomy profile: Bromoviridae. J Gen Virol 100(8):1206–1207

    Article  CAS  Google Scholar 

  49. He G, Zhang Z, Sathanantham P, Diaz A, Wang X (2021) Brome mosaic virus (Bromoviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 252–259

    Chapter  Google Scholar 

  50. Loesch-Fries LS (2021) Alfalfa mosaic virus (Bromoviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 132–139

    Chapter  Google Scholar 

  51. Morozov SY, Agranovsky AA (2021) Alphaflexiviruses (Alphaflexiviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 140–148

    Chapter  Google Scholar 

  52. Kreuze JF, Vaira AM, Menzel W, Candresse T, Zavriev SK, Hammond J, Hyun Ryu K, ICTV Report Consortium (2020) ICTV virus taxonomy profile: Alphaflexiviridae. J Gen Virol 101(7):699–700

    Article  CAS  Google Scholar 

  53. Sarmiento C, Sõmera M, Truve E (2021) Solemoviruses (Solemoviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, UK, pp 712–718

    Chapter  Google Scholar 

  54. Sõmera M, Sarmiento C, Truve E (2015) Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7(6):3076–3115

    Article  Google Scholar 

  55. Sarra S, Peters D (2003) Rice yellow mottle virus is transmitted by cows, donkeys, and grass rats in irrigated rice crops. Plant Dis 87(7):804–808

    Article  Google Scholar 

  56. Traoré MD, Traoré VS, Galzi-Pinel A, Fargette D, Konaté G, Traoré AS, Traoré O (2008) Abiotic transmission of Rice yellow mottle virus through soil and contact between plants. Pak J Biol Sci 11(6):900–904

    Article  Google Scholar 

  57. Uke A, Tibanyendela N, Ikeda R, Fujiie A, Natsuaki KT (2014) Modes of transmission and stability of Rice yellow mottle virus. J Plant Protect Res 54(4):363–366

    Article  Google Scholar 

  58. Massart S, Candresse T, Gil J, Lacomme C, Predajna L, Ravnikar M, Reynard J-S, Rumbou A, Saldarelli P, Škorić D, Vainio EJ, Valkonen JPT, Vanderschuren H, Varveri C, Wetzel T (2017) A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Front Microbiol 8:45

    Article  Google Scholar 

  59. Pecman A, Kutnjak D, Gutiérrez-Aguirre I, Adams I, Fox A, Boonham N, Ravnikar M (2017) Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front Microbiol 8:1998

    Article  Google Scholar 

  60. Pecman A, Kutnjak D, Mehle N, Žnidarič MT, Gutiérrez-Aguirre I, Pirnat P, Adams I, Boonham N, Ravnikar M (2018) High-throughput sequencing facilitates characterization of a “forgotten” plant virus: the case of a Henbane mosaic virus infecting tomato. Front Microbiol 9:2739

    Article  Google Scholar 

  61. Roossinck MJ (2012) Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet 46:359–369

    Article  CAS  Google Scholar 

  62. Bernardo P, Charles-Dominique T, Barakat M, Ortet P, Fernandez E, Filloux D, Hartnady P, Rebelo TA, Cousins SR, Mesleard F, Cohez D, Yavercovski N, Varsani A, Harkins GW, Peterschmitt M, Malmstrom CM, Martin DP, Roumagnac P (2018) Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J 12(1):173–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Q. Betancourt .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Betancourt, W.Q. (2023). Waterborne Plant Viruses of Importance in Agriculture. In: Shulman, L.M. (eds) Infectious Diseases. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2463-0_1096

Download citation

Publish with us

Policies and ethics