Skip to main content

Handprinted Character and Word Recognition

  • Reference work entry
  • First Online:
Handbook of Document Image Processing and Recognition
  • 3710 Accesses

Abstract

The handprinted texts are produced when the writer tries to emulate some standard printed representation of the characters with the goal to make the written texts legible. Postal address blocks, different fillable forms, or other documents are among the examples of handprinting. Current chapter reviews the main techniques in recognizing handprinted characters and words. It outlines the characteristics of the handprinted texts, such as the stroke structure, distribution of strokes inside character bounding box, and frequently separated characters. Then it investigates how the reviewed techniques address such characteristics of the handprinted texts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed M, Ward R (2002) A rotation invariant rule-based thinning algorithm for character recognition. IEEE Trans Pattern Anal Mach Intell 24(12):1672–1678

    Google Scholar 

  2. Anderson RG (1968) Syntax-directed recognition of hand-printed two-dimensional mathematics. PhD thesis, Harvard University

    Google Scholar 

  3. Arica N, Yarman-Vural FT (2001) An overview of character recognition focused on off-line handwriting. IEEE Trans Syst Man Cybern Part C Appl Rev 31(2):216–233

    Google Scholar 

  4. Bailey RR, Srinath M (1996) Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans Pattern Anal Mach Intell 18(4):389–399

    Google Scholar 

  5. Bakis R, Herbst NM, Nagy G (1968) An experimental study of machine recognition of hand-printed numerals. IEEE Trans Syst Sci Cybern 4(2):119–132

    Google Scholar 

  6. Belkasim SO, Shridhar M, Ahmadi M (1991) Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit 24(12):1117–1138

    Google Scholar 

  7. Bernard TM, Manzanera A (1999) Improved low complexity fully parallel thinning algorithm. In: Proceedings of the international conference on image analysis and processing, Venice, 1999, pp 215–220

    Google Scholar 

  8. Bernstein MI (1964) Computer recognition of on-line, hand-written characters. Technical report RM-3753-ARPA, The RAND Corporation

    Google Scholar 

  9. Bin Z, Srihari SN (2004) Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans Pattern Anal Mach Intell 26(4):525–528

    Google Scholar 

  10. Blum H (1967) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W (ed) Models for the perception of speech and visual form. MIT, Cambridge, pp 362–380

    Google Scholar 

  11. Bozinovic RM and Srihari SN (1989) Off-line cursive script word recognition. IEEE Trans Pattern Anal Mach Intell 11(1):68–83

    Google Scholar 

  12. Bunke H, Wang PS-P (1997) Handbook of character recognition and document image analysis. World Scientific, Singapore

    Google Scholar 

  13. Cao H, Govindaraju V (2009) Preprocessing of low-quality handwritten documents using Markov random fields. IEEE Trans Pattern Anal Mach Intell 31(7):1184–1194

    Google Scholar 

  14. Casey RG, Lecolinet E (1996) A survey of methods and strategies in character segmentation. IEEE Trans Pattern Anal Mach Intell 18(7):690–706

    Google Scholar 

  15. Chen MY, Kundu A, Srihari SN (1995) Variable duration hidden Markov model and morphological segmentation for handwritten word recognition. IEEE Trans Image Process 4(12):1675–1688

    Google Scholar 

  16. Cheng D, Yan H (1998) Recognition of handwritten digits based on contour information. Pattern Recognit 31(3):235–255

    Google Scholar 

  17. Cheriet M, Kharma N, Liu CL (2007) Character recognition systems: a guide for students and practitioners. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  18. Ciresan D (2008) Avoiding segmentation in multi-digit numeral string recognition by combining single and two-digit classifiers trained without negative examples. In: 10th international symposium on symbolic and numeric algorithms for scientific computing (SYNASC’08), Timisoara, pp 225–230

    Google Scholar 

  19. Cohen E, Hull JJ, Srihari SN (1991) Understanding text in a structured environment: determining zip codes from addresses. Int J Pattern Recognit Artif Intell 5(1–2):221–264

    Google Scholar 

  20. Cohen E, Hull JJ, Srihari SN (1994) Control structure for interpreting handwritten addresses. IEEE Trans Pattern Anal Mach Intell 16(10):1049–1055

    Google Scholar 

  21. Dasarathy BV (1991) Nearest neighbor (NN) norms: NN pattern classification techniques. IEEE Computer Society, Los Alamitos

    Google Scholar 

  22. El-Yacoubi A, Gilloux M, Sabourin R, Suen CY (1999) An HMM-based approach for off-line unconstrained handwritten word modeling and recognition. IEEE Trans Pattern Anal Mach Intell 21(8):752–760

    Google Scholar 

  23. El-Yacoubi MA, Gilloux M, Bertille JM (2002) A statistical approach for phrase location and recognition within a text line: an application to street name recognition. IEEE Trans Pattern Anal Mach Intell 24(2):172–188

    Google Scholar 

  24. Favata JT (1996) Character model word recognition. In: Fifth international workshop on frontiers in handwriting recognition, Essex, pp 437–440

    Google Scholar 

  25. Favata JT, Srikantan G (1996) A multiple feature/resolution approach to handprinted digit and character recognition. Int J Imaging Syst Technol 7(4):304–311

    Google Scholar 

  26. Freeman H (1961) On the encoding of arbitrary geometric configurations. IRE Trans Electron Comput EC-10(2):260–268

    MathSciNet  Google Scholar 

  27. Freeman H (1974) Computer processing of line-drawing images. ACM Comput Surv 6(1):57–97. 356627

    MATH  Google Scholar 

  28. Fujisawa H, Nakano Y, Kurino K (1992) Segmentation methods for character recognition: from segmentation to document structure analysis. Proc IEEE 80(7):1079–1092

    Google Scholar 

  29. Fukushima K (2003) Neocognitron for handwritten digit recognition. Neurocomputing 51(0):161–180

    Google Scholar 

  30. Gader PD, Mohamed M, Chiang J-H (1997) Handwritten word recognition with character and inter-character neural networks. IEEE Trans Syst Man Cybern Part B Cybern 27(1): 158–164

    Google Scholar 

  31. Garris MD, Dimmick DL (1996) Form design for high accuracy optical character recognition. IEEE Trans Pattern Anal Mach Intell 18(6):653–656

    Google Scholar 

  32. Garris MD, Wilkinson RA (1992) Handwritten segmented characters NIST special database 3, National institute of standards and technology, Gaithersburg, Maryland, USA

    Google Scholar 

  33. Garris MD, Blue JL, Candela GT, Dimmick DL, Geist J, Grother PJ, Janet SA, Wilson CL (1994) NIST form-based handprint recognition system, Technical Report NISTIR 5469, National institute of standards and technology, Gaithersburg, Maryland, USA.

    Google Scholar 

  34. Govindaraju V, Slavik P, Xue H (2002) Use of lexicon density in evaluating word recognizers. IEEE Trans Pattern Anal Mach Intell 24(6):789–800

    Google Scholar 

  35. Grother P (1992) Karhunen Loève feature extraction for neural handwritten character recognition. Proc SPIE 1709(1):155

    Google Scholar 

  36. Grother PJ (1995) NIST special database 19-handprinted forms and characters database, National institute of standards and technology, Gaithersburg, Maryland, USA

    Google Scholar 

  37. Grother PJ, Candela GT (1993) Comparison of handprinted digit classifiers. (U.S.), National institute of standards and technology, Gaithersburg, Maryland, USA

    Google Scholar 

  38. Guo Z, Hall RW (1992) Fast fully parallel thinning algorithms. CVGIP Image Underst 55(3):317–328

    MATH  Google Scholar 

  39. Hinton GE, Dayan P, Revow M (1997) Modeling the manifolds of images of handwritten digits. IEEE Trans Neural Netw 8(1):65–74

    Google Scholar 

  40. Ho TK, Hull JJ, Srihari SN (1994) Decision combination in multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 16(1):66–75

    Google Scholar 

  41. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    MATH  Google Scholar 

  42. Huang YS, Suen CY (1995) A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Trans Pattern Anal Mach Intell 17(1):90–94

    Google Scholar 

  43. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554

    Google Scholar 

  44. Ianakiev K, Govindaraju V (2002) Deriving pseudo-probabilities of correctness given scores. In: Chen D, Cheng X (eds) Pattern recognition and string matching. Kluwer, Dordrecht/Boston

    Google Scholar 

  45. Impedovo S, Lucchese MG, Pirlo G (2006) Optimal zoning design by genetic algorithms. IEEE Trans Syst Man Cybern Part A Syst Hum 36(5):833–846

    Google Scholar 

  46. Park J, Govindaraju V, Srihari SN (2000) OCR in a hierarchical feature space. IEEE Trans Pattern Anal Mach Intell 22(4):400–407

    Google Scholar 

  47. Jayadevan R, Kolhe S, Patil P, Pal U (2011) Automatic processing of handwritten bank cheque images: a survey. Int J Doc Anal Recognit 15(4):1–30

    Google Scholar 

  48. Kamel M, Zhao A (1993) Extraction of binary character/graphics images from grayscale document images. CVGIP Graph Models Image Process 55(3):203–217. 167588

    Google Scholar 

  49. Kan C, Srinath MD (2002) Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognit 35(1):143–154

    MATH  Google Scholar 

  50. Kaufmann G, Bunke H (2000) Automated reading of cheque amounts. Pattern Anal Appl 3(2):132–141

    Google Scholar 

  51. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Google Scholar 

  52. Khotanzad A, Hong YH (1990) Rotation invariant image recognition using features selected via a systematic method. Pattern Recognit 23(10):1089–1101

    Google Scholar 

  53. Kim G, Govindaraju V (1997) A lexicon driven approach to handwritten word recognition for real-time applications. IEEE Trans Pattern Anal Mach Intell 19(4):366–379

    Google Scholar 

  54. Kim G, Govindaraju V (1997) Bank check recognition using cross validation between legal and courtesy amounts. Int J Pattern Recognit Artif Intell 11(4):657–674

    Google Scholar 

  55. Kirsch RA, Cahn L, Ray C, Urban GH (1958) Experiments in processing pictorial information with a digital computer. In Papers and discussions presented at the December 9–13, 1957, eastern joint computer conference: Computers with deadlines to meet. ACM: Washington, D.C 221–229

    Google Scholar 

  56. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Google Scholar 

  57. Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley InterScience, Hoboken

    MATH  Google Scholar 

  58. Kurniawan F, Rehman A, Mohamad D (2009) From contours to characters segmentation of cursive handwritten words with neural assistance. In: International conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME), Bandung, 2009, pp 1–4

    Google Scholar 

  59. Lam L, Suen CY (1995) Optimal combinations of pattern classifiers. Pattern Recognit Lett 16(9):945–954

    Google Scholar 

  60. Le Cun Y, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, Henderson D, Howard RE, Hubbard W (1989) Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun Mag 27(11):41–46

    Google Scholar 

  61. LeCun Y, Jackel LD, Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, Muller UA, Sackinger E, Simard P, Vapnik V (1995) Learning algorithms for classification: a comparison on handwritten digit recognition. In: Oh JH, Kwon C, Cho S (eds) Neural networks: the statistical mechanics perspective. World Scientific, Singapore, pp 261–276

    Google Scholar 

  62. Lee RST, Liu JNK (2003) Invariant object recognition based on elastic graph matching: theory and applications. IOS, Amsterdam/Washington, DC

    MATH  Google Scholar 

  63. Liu C-L, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recognit 36(10):2271–2285

    MATH  Google Scholar 

  64. Liu C-L, Sako H, Fujisawa H (2004) Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings. IEEE Trans Pattern Anal Mach Intell 26(11):1395–1407

    Google Scholar 

  65. Liu C-L, Fujisawa H, Marinai S (2008) Classification and learning methods for character recognition: advances and remaining problems. In: Marinai S, Fujisawa H (eds) Machine learning in document analysis and recognition. Volume 90 of studies in computational intelligence. Springer, Berlin/Heidelberg, pp 139–161

    Google Scholar 

  66. Madhvanath S, Govindaraju V, Srihari SN (1996) Reading handwritten phrases on U.S. census forms. Int J Imaging Syst Technol 7(4):312–319

    Google Scholar 

  67. Madhvanath S, Kim G, Govindaraju V (1999) Chaincode contour processing for handwritten word recognition. IEEE Trans Pattern Anal Mach Intell 21(9):928–932

    Google Scholar 

  68. Madhvanath S, Kleinberg E, Govindaraju V (1999) Holistic verification of handwritten phrases. IEEE Trans Pattern Anal Mach Intell 21(12):1344–1356

    Google Scholar 

  69. Marti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46

    MATH  Google Scholar 

  70. Milewski R, Govindaraju V, Bhardwaj A (2009) Automatic recognition of handwritten medical forms for search engines. Int J Doc Anal Recognit 11(4):203–218

    Google Scholar 

  71. Mohamed M, Gader P (1996) Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation-based dynamic programming techniques. IEEE Trans Pattern Anal Mach Intell 18(5):548–554

    Google Scholar 

  72. Loncaric S (1998) A survey of shape analysis techniques. Pattern Recognit 31(8):983–1001

    Google Scholar 

  73. Oh I-S (1995) Document image binarization preserving stroke connectivity. Pattern Recognit Lett 16(7):743–748

    Google Scholar 

  74. Oliveira LS, Sabourin R, Bortolozzi F, Suen CY (2002) Automatic recognition of handwritten numerical strings: a recognition and verification strategy. IEEE Trans Pattern Anal Mach Intell 24(11):1438–1454

    Google Scholar 

  75. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  76. Palumbo PW, Swaminathan P, Srihari SN (1986) Document image binarization: evaluation of algorithms. Proc. SPIE 697:278–285

    Google Scholar 

  77. Parizeau M, Plamondon R (1995) A fuzzy-syntactic approach to allograph modeling for cursive script recognition. IEEE Trans Pattern Anal Mach Intell 17(7):702–712

    Google Scholar 

  78. Park J (2002) An adaptive approach to offline handwritten word recognition. IEEE Trans Pattern Anal Mach Intell 24(7):920–931

    Google Scholar 

  79. Park J, Govindaraju V (2002) Use of adaptive segmentation in handwritten phrase recognition. Pattern Recognit 35(1):245–252

    MATH  Google Scholar 

  80. Plamondon R, Srihari SN (2000) Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 22(1):63–84

    Google Scholar 

  81. Plötz T, Fink G (2009) Markov models for offline handwriting recognition: a survey. Int J Doc Anal Recognit 12(4):269–298

    Google Scholar 

  82. Senior AW, Robinson AJ (1998) An off-line cursive handwriting recognition system. IEEE Trans Pattern Anal Mach Intell 20(3):309–321

    Google Scholar 

  83. Setlur S, Lawson A, Govindaraju V, Srihari S (2002) Large scale address recognition systems truthing, testing, tools, and other evaluation issues. Int J Doc Anal Recognit 4(3):154–169

    Google Scholar 

  84. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168

    Google Scholar 

  85. Srihari SN, Shin Y-C, Ramanaprasad V, Lee D-S (1996) A system to read names and addresses on tax forms. Proc IEEE 84(7):1038–1049

    Google Scholar 

  86. Srikantan G, Lam SW, Srihari SN (1996) Gradient-based contour encoding for character recognition. Pattern Recognit 29(7):1147–1160

    Google Scholar 

  87. Suen CY, Nadal C, Legault R, Mai TA, Lam L (1992) Computer recognition of unconstrained handwritten numerals. Proc IEEE 80(7):1162–1180

    Google Scholar 

  88. Suen CY, Lam L, Guillevic D, Strathy NW, Cheriet M, Said JN, Fan R (1996) Bank check processing system. Int J Imaging Syst Technol 7(4):392–403

    Google Scholar 

  89. Tappert CC, Suen CY, Wakahara T (1990) The state of the art in online handwriting recognition. IEEE Trans Pattern Anal Mach Intell 12(8):787–808

    Google Scholar 

  90. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    MathSciNet  Google Scholar 

  91. Tou JT, Gonzalez RC (1972) Recognition of handwritten characters by topological feature extraction and multilevel categorization. IEEE Trans Comput C-21(7):776–785

    MATH  Google Scholar 

  92. Toussaint GT, Donaldson RW (1970) Algorithms for recognizing contour-traced handprinted characters. IEEE Trans Comput C-19(6):541–546

    MATH  Google Scholar 

  93. Trier ØD, Jain AK, Taxt T (1996) Feature extraction methods for character recognition-a survey. Pattern Recognit 29(4):641–662

    Google Scholar 

  94. Tulyakov S, Govindaraju V (2001) Probabilistic model for segmentation based word recognition with lexicon. In: 6th international conference on document analysis and recognition (ICDAR 2001), pp 164–167, Seattle. IEEE Computer Society

    Google Scholar 

  95. Tulyakov S, Govindaraju V (2008) Use of identification trial statistics for combination of biometric matchers. IEEE Trans Inf Forensics Secur 3(4):719–733

    Google Scholar 

  96. Tulyakov S, Wu C, Govindaraju V (2010) On the difference between optimal combination functions for verification and identification systems. Int J Pattern Recognit Artif Intell 24(2):173–191

    Google Scholar 

  97. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Google Scholar 

  98. Uchida S, Sakoe H (2005) A survey of elastic matching techniques for handwritten character recognition. IEICE Trans Inf Syst E88-D(8):1781–1790

    Google Scholar 

  99. Verma B, Blumenstein M (2008) Fusion of segmentation strategies for off-line cursive handwriting recognition. In: Verma B, Blumenstein M (eds) Pattern recognition technologies and applications: recent advances. IGI Global, Hershey

    Google Scholar 

  100. Wang K, Yang YY, Suen CY (1988) Multi-layer projections for the classification of similar Chinese characters. In: 9th international conference on pattern recognition, Rome, 1988, vol.2, pp 842–844

    Google Scholar 

  101. Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22(3):418–435

    Google Scholar 

  102. Xue H, Govindaraju V (2002) Incorporating contextual character geometry in word recognition. In: Proceedings of eighth international workshop on frontiers in handwriting recognition, Niagara-on-the-Lake, 2002, pp 123–127

    Google Scholar 

  103. Xue H, Govindaraju V (2006) Hidden Markov models combining discrete symbols and continuous attributes in handwriting recognition. IEEE Trans Pattern Anal Mach Intell 28(3):458–462

    Google Scholar 

  104. Ying L, Srihari SN (1997) Document image binarization based on texture features. IEEE Trans Pattern Anal Mach Intell 19(5):540–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Tulyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tulyakov, S., Govindaraju, V. (2014). Handprinted Character and Word Recognition. In: Doermann, D., Tombre, K. (eds) Handbook of Document Image Processing and Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-859-1_11

Download citation

Publish with us

Policies and ethics