Skip to main content

Vision-Based Topological Navigation: An Implicit Solution to Loop Closure

  • Reference work entry
Handbook of Intelligent Vehicles

Abstract

Autonomous navigation using a single camera is a challenging and active field of research. Among the different approaches, visual memory-based navigation strategies have gained increasing interests in the last few years. They consist of representing the mobile robot environment with visual features topologically organized gathered in a database (visual memory). Basically, the navigation process from a visual memory can be split in three stages: (1) visual memory acquisition, (2) initial localization, and (3) path planning and following (refer to Fig. 53.1). Importantly, this frame work allows accurate autonomous navigation without using explicitly a loop closure strategy. The goal of this chapter is to provide to the reader an illustrative example of such a strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreasson H, Treptow A, Duckett T (2005) Localization for mobile robots using panoramic vision, local features and particle filter. In: IEEE international conference on robotics and automation, ICRA’05, Barcelone, Espagne, Apr 2005, pp 3348–3353

    Google Scholar 

  • Andreasson H, Treptow A, Duckett T (2007) Self-localization in non-stationary environments using omni-directional vision. Robot Auton Syst 55(7):541–551

    Article  Google Scholar 

  • Atkinson R, Shiffrin R (1968) Human memory: a proposed system and its control processes. In: Spence KW, Spence JT (eds) The psychology of learning and motivation. Academic, New York

    Google Scholar 

  • Bacca B, Salvi J, Batlle J, Cufi X (2010) Appearance-based mapping and localization using feature stability histograms. Electron Lett 46(16):1120–1121

    Article  Google Scholar 

  • Bibby C, Reid I (2007) Simultaneous localisation and mapping in dynamic environments (slamide) with reversible data association. In: Robotics: science and systems, Atlanta, GA, USA

    Google Scholar 

  • Blaer P, Allen P (2002) Topological mobile robot localization using fast vision techniques. In: IEEE international conference on robotics and automation, ICRA’02, Washington, USA, May 2002, pp 1031–1036

    Google Scholar 

  • Chen J, Dixon WE, Dawson DM, McIntire M (2003) Homography-based visual servo tracking control of a wheeled mobile robot. In: Proceeding of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, Oct 2003, pp 1814–1819

    Google Scholar 

  • Courbon J, Mezouar Y, Martinet P (2008) Indoor navigation of a non-holonomic mobile robot using a visual memory. Auton Robots 25(3):253–266

    Article  Google Scholar 

  • Courbon J, Mezouar Y, Martinet P (2009) Autonomous navigation of vehicles from a visual memory using a generic camera model. Intell Transport Syst (ITS) 10:392–402

    Google Scholar 

  • Dayoub F, Duckett T (2008). An adaptative appearance-based map for long-term topological localization of mobile robots. In: IEEE/RSJ international conference on intelligent robots and systems, IROS’08, Nice, France, Sep 2008, pp 3364–3369

    Google Scholar 

  • Dayoub F, Duckett T, Cielniak G (2010) Short- and long-term adaptation of visual place memories for mobile robots. In: Remembering who we are- human memory for artificial agents symposium, AISB 2010, Leicester, UK

    Google Scholar 

  • DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE Trans Pattern Anal Mach Intell 24(2):237–267

    Article  Google Scholar 

  • Fang Y, Dawson D, Dixon W, de Queiroz M (2002) Homography-based visual servoing of wheeled mobile robots. In: Conference on decision and control, Las Vegas, NV, Dec 2002, pp 2866–2871

    Google Scholar 

  • Gaspar J, Winters N, Santos-Victor J (2000) Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Trans Robot Autom 16:890–898

    Article  Google Scholar 

  • Goedemé T, Tuytelaars T, Vanacker G, Nuttin M, Gool LV, Gool LV (2005) Feature based omnidirectional sparse visual path following. In: IEEE/RSJ international conference on intelligent robots and systems, Edmonton, Canada, Aug 2005, pp 1806–1811

    Google Scholar 

  • Gonzalez-Barbosa J, Lacroix S (2002) Rover localization in natural environments by indexing panoramic images. In: IEEE international conference on robotics and automation, ICRA’02, vol 2, Washington, DC, USA, May 2002, pp 1365–1370

    Google Scholar 

  • Harris C, Stephens M (1988) A combined corner and edge detector. In: The fourth alvey vision conference, Manchester, UK, pp 147–151

    Google Scholar 

  • Hayet J, Lerasle F, Devy M (2002) A visual landmark framework for indoor mobile robot navigation. In: IEEE international conference on robotics and automation, ICRA’02, Washington, DC, USA, May 2002, pp 3942–3947

    Google Scholar 

  • HochdorferS, Schlegel C (2009) Towards a robust visual SLAM approach: addressing the challenge of life-long operation. In: 14th international conference on advanced robotics, Munich, Germany

    Google Scholar 

  • Ieng S, Benosman R, Devars J (2003) An efficient dynamic multi-angular feature points matcher for catadioptric views. In: Workshop OmniVis’03, in conjunction with computer vision and pattern recognition (CVPR), vol 07, Wisconsin, USA, Jun 2003, p 75

    Google Scholar 

  • Jones S, Andresen C, Crowley J (1997) Appearance-based process for visual navigation. In: IEEE/RSJ international conference on intelligent robots and systems, IROS’97, vol 2, Grenoble, France, pp 551–557

    Google Scholar 

  • Lemaire T, Berger C, Jung I, Lacroix S (2007) Vision-based slam: stereo and monocular approaches. Int J Comput Vision 74(3):343–364

    Article  Google Scholar 

  • Linåker F, Ishikawa M (2004) Rotation invariant features from omnidirectional camera images using a polar higher-order local autocorrelation feature extractor. In: IEEE/RSJ international conference on intelligent robots and systems, IROS’04, vol 4, Sendai, Japon, Sep 2004, pp 4026–4031

    Google Scholar 

  • Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  • Ma Y, Kosecka J, Sastry SS (1999) Vision guided navigation for a nonholonomic mobile robot. IEEE Trans Robot Autom 15(3):521–537

    Article  Google Scholar 

  • Matsumoto Y, Inaba M, Inoue H (1996) Visual navigation using view-sequenced route representation. In: IEEE international conference on robotics and automation, ICRA’96, vol 1, Minneapolis, Minnesota, USA, Apr 1996, pp 83–88

    Google Scholar 

  • Matsumoto Y, Ikeda K, Inaba M, Inoue H (1999) Visual navigation using omnidirectional view sequence. In: IEEE/RSJ international conference on intelligent robots and systems, IROS’99, vol 1, Kyongju, Corée, Oct 1999, pp 317–322

    Google Scholar 

  • Menegatti E, Zoccarato M, Pagello E, Ishiguro H (2003) Hierarchical image-based localisation for mobile robots with monte-carlo localisation. In: European conference on mobile robots, ECMR’03, Varsovie, Pologne, Sep 2003

    Google Scholar 

  • Mouragnon E, Lhuillier M, Dhome M, Dekeyser F, Sayd P (2009) Generic and real-time structure from motion using local bundle adjustment. Image Vision Comput 27(8):1178–1193

    Article  Google Scholar 

  • Murillo A, Guerrero J, Sagüés C (2007) SURF features for efficient robot localization with omnidirectional images. In: IEEE international conference on robotics and automation, ICRA’07, Rome, Italie, Apr 2007, pp 3901–3907

    Google Scholar 

  • Nistér D (2004) An efficient solution to the five-point relative pose problem. Trans Pattern Anal Mach Intell 26(6):756–770

    Article  Google Scholar 

  • Pajdla T, Hlaváč V (1999) Zero phase representation of panoramic images for image based localization. In: 8th international conference on computer analysis of images and patterns, Ljubljana, Slovénie, Sep 1999, pp 550–557

    Google Scholar 

  • Pollefeys M, Gool LV, Vergauwen M, Verbiest F, Cornelis K, Tops J, Koch R (2004) Visual modeling with a hand-held camera. Int J Comput Vision 59(3):207–232

    Article  Google Scholar 

  • Royer E, Lhuillier M, Dhome M, Lavest J-M (2007) Monocular vision for mobile robot localization and autonomous navigation. Int J Comput Vision 74:237–260, special joint issue on vision and robotics

    Article  Google Scholar 

  • Samson C (1995) Control of chained systems. Application to path following and time-varying stabilization of mobile robots. IEEE Trans Autom Control 40(1):64–77

    Article  MathSciNet  MATH  Google Scholar 

  • Svoboda T, Pajdla T,(2001) Matching in catadioptric images with appropriate windows and outliers removal. In: 9th international conference on computer analysis of images and patterns, Berlin, Allemagne, Sep 2001, pp 733–740

    Google Scholar 

  • Tamimi A, Andreasson H, Treptow A, Duckett T, Zell A (2005) Localization of mobile robots with omnidirectional vision using particle filter and iterative SIFT. In: 2nd European conference on mobile robots (ECMR), Ancona, Italie, Sep 2005, pp 2–7

    Google Scholar 

  • Thormählen T, Broszio H, Weissenfeld A (2004) Keyframe selection for camera motion and structure estimation from multiple views. In: 8th European conference on computer vision (ECCV), Prague, Czech Republic, May 2004, pp 523–535

    Google Scholar 

  • Thuilot B, Bom J, Marmoiton F, Martinet P (2004) Accurate automatic guidance of an urban electric vehicle relying on a kinematic GPS sensor. In: 5th IFAC symposium on intelligent autonomous vehicles, IAV’04, Instituto Superior Técnico, Lisbonne, Portugal, Jul 2004

    Google Scholar 

  • Torr P (2002) Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int J Comput Vision 50(1):35–61

    Article  MATH  Google Scholar 

  • Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice, vol 1883, Lecture notes in computer science. Springer, Berlin, pp 298–372

    Chapter  Google Scholar 

  • Tsakiris D, Rives P, Samson C (1998) Extending visual servoing techniques to nonholonomic mobile robots. In: GHD Kriegman, A Morse (eds) The confluence of vision and control, LNCIS, vol 237. Springer, London/New York, pp 106–117

    Google Scholar 

  • Wangsiripitak S, Murray D (2009) Avoiding moving outliers in visual SLAM by tracking moving objects. In: IEEE international conference on robotics and automation, ICRA’09, Kobe, Japan, pp 705–710

    Google Scholar 

  • Yamauchi B, Langley P (1997) Spatial learning for navigation in dynamic environments. IEEE Trans Syst Man Cybern 26(3):496–505

    Google Scholar 

  • Zhang Z, Deriche R, Faugeras O, Luong Q-T (1995) A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif Intell J 78:87–119

    Article  Google Scholar 

  • Zodiac T (1995) In: dewit Canedas C, Siciliano B, Bastin G (eds) Theory of robot control. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Mezouar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

Mezouar, Y., Courbon, J., Martinet, P. (2012). Vision-Based Topological Navigation: An Implicit Solution to Loop Closure. In: Eskandarian, A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_53

Download citation

Publish with us

Policies and ethics