Skip to main content

Hierarchical, Intelligent and Automatic Controls

  • Reference work entry
Handbook of Intelligent Vehicles

Abstract

We present a survey on traffic management and control frameworks for Intelligent Vehicle Highway Systems (IVHS). First, we give a short overview of the main currently used traffic control methods that can be applied in IVHS. Next, various traffic management architectures for IVHS such as PATH, Dolphin, Auto21 CDS, etc., are briefly discussed and a comparison of the various frameworks is presented. Subsequently, we focus on control of vehicles inside a platoon, and we present a detailed discussion on the notion of string stability. Next, we consider higher-level control of platoons of vehicles. Finally, we present an outlook on open problems and topics for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59

    Google Scholar 

  • Ã…ström KJ, Wittenmark B (1997) Computer-controlled systems – theory and applications, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Barbieri E (1993) Stability analysis of a class of interconnected systems. ASME J Dyn Syst Meas Control 115(3):546–551

    Article  MathSciNet  MATH  Google Scholar 

  • Baskar LD (2009) Traffic management and control in intelligent vehicle highway systems. Ph.D. thesis, Delft University of Technology, Delft, TRAIL Thesis Series T2009/12

    Google Scholar 

  • Baskar LD, De Schutter B, Hellendoorn H (2007) Hierarchical traffic control and management with intelligent vehicles. In: Proceedings of the 2007 IEEE intelligent vehicles symposium (IV’07), Istanbul, pp 834–839

    Google Scholar 

  • Baskar LD, De Schutter B, Hellendoorn J (2008) Model-based predictive traffic control for intelligent vehicles: dynamic speed limits and dynamic lane allocation. In: Proceedings of the 2008 IEEE intelligent vehicles symposium (IV’08), Eindhoven, pp 174–179

    Google Scholar 

  • Baskar LD, De Schutter B, Hellendoorn H (2009a) Optimal routing for intelligent vehicle highway systems using mixed integer linear programming. In: Proceedings of the 12th IFAC symposium on transportation systems, Redondo Beach, pp 569–575

    Google Scholar 

  • Baskar LD, De Schutter B, Hellendoorn J (2009b) Optimal routing for intelligent vehicle highway systems using a macroscopic traffic flow model. In: Proceedings of the 12th international IEEE conference on intelligent transportation systems (ITSC 2009), St. Louis, pp 576–581

    Google Scholar 

  • Baskar LD, De Schutter B, Papp Z, Hellendoorn J (2011) Traffic control and intelligent vehicle highway systems: a survey. IET Intell Transp Syst (to appear)

    Google Scholar 

  • Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Bishop R (2005) Intelligent vehicles technology and trends. Artech House, Norwood

    Google Scholar 

  • Broucke M, Varaiya P (1997) The automated highway system: a transportation technology for the 21st century. Control Eng Pract 5(11):1583–1590

    Article  Google Scholar 

  • Chen SH, Jakeman AJ, Norton JP (2008) Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math Comput Simul 78(2):379–400

    Article  MathSciNet  MATH  Google Scholar 

  • Chu K-C (1974) Optimal dencentralized regulation for a string of coupled systems. IEEE Trans Autom Control 19(3):243–246

    Article  MATH  Google Scholar 

  • CVIS web site. http://www.cvisproject.org/. Accessed 15 Nov 2010

  • Daganzo CF (1997) Fundamentals of transportation and traffic operations. Pergamon, Oxford

    Google Scholar 

  • Desoer CA, Vidyasagar M (2009) Feedback systems: input-output properties classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Pennsylvania

    Google Scholar 

  • El-Sayed ML, Krishnaprasad PS (1981) Homogeneous interconnected systems: an example. IEEE Trans Autom Control 26(4):894–901

    Article  Google Scholar 

  • Fenton RE (1994) IVHS/AHS: driving into the future. IEEE Control Syst Mag 14(6):13–20

    Article  Google Scholar 

  • Ferber J (1999) Multi-agent systems – an introduction to distributed artificial intelligence. Addison-Wesley, Harlow

    Google Scholar 

  • Fletcher R, Leyffer S (1998) Numerical experience with lower bounds for MIQP branch-and-bound. SIAM J Optim 8(2):604–616

    Article  MathSciNet  MATH  Google Scholar 

  • Gehring O, Fritz H (1997) Practical results of a longitudinal control concept for truck platooning with vehicle to vehicle communication. In: Proceedings of the IEEE conference on intelligent transportation systems, Boston, pp 117–122

    Google Scholar 

  • Gelfand M, Fomin SV (1991) Calculus of variations. Dover, New York

    Google Scholar 

  • Hall R, Chin C (2005) Vehicle sorting for platoon formation: impacts on highway entry and throughput. Transp Res C 13(5–6):405–420

    Article  Google Scholar 

  • Hallé S, Chaib-draa B (2005) A collaborative driving system based on multiagent modelling and simulations. Transp Res C Emerg Technol 13(4):320–345

    Article  Google Scholar 

  • Hammerstrom D (1993) Working with neural networks. IEEE Spectr 30(7):46–53

    Article  Google Scholar 

  • Hayes-Roth F (1985) Rule-based systems. Commun ACM 28(9):921–932

    Article  Google Scholar 

  • Hedrick JK, Tomizuka M, Varaiya P (1994) Control issues in automated highway systems. IEEE Control Syst Mag 14(6):21–32

    Article  Google Scholar 

  • Hestenes MR (1966) Calculus of variations and optimal control theory. Wiley, New York

    MATH  Google Scholar 

  • Horowitz R, Varaiya P (2000) Control design of an automated highway system. Proc IEEE 88(7):913–925

    Article  Google Scholar 

  • Hsu A, Eskafi F, Sachs S, Varaiya P (1991) Design of platoon maneuver protocols for IVHS. Technical Report 96–21, California Partners for Advanced Transit and Highways PATH, University of California, Berkeley

    Google Scholar 

  • Hsu A, Eskafi F, Sachs S, Varaiya P (1993) Protocol design for an automated highway system. Discrete Event Dyn Syst Theory Appl 2(1):183–206

    Article  Google Scholar 

  • International Organization for Standardization (2002) Transport information and control systems – adaptive cruise control systems – performance requirements and test procedures, ISO 15622. Technical report, Transport information and control systems

    Google Scholar 

  • Ioannou PA, Chien CC (1993) Autonomous intelligent cruise control. IEEE Trans Vehicle Technol 42(4):657–672

    Article  Google Scholar 

  • Kachroo P, Özbay K (1999) Feedback control theory for dynamic traffic assignment. Advances in industrial control. Springer, Berlin

    Book  Google Scholar 

  • Khalil HK (2000) Nonlinear systems, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Kirk DE (1970) Optimal control theory: an introduction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Klinge S, Middleton RH (2009) Time headway requirements for string stability of homogeneous linear unidirectionally connected systems. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 1992–1997

    Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Kotsialos A, Papageorgiou M, Diakaki C, Pavlis Y, Middelham F (2002) Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool METANET. IEEE Trans Intell Transp Syst 3(4):282–292

    Article  Google Scholar 

  • Levine WS, Athans M (1966) On the optimal error regulation of a string of moving vehicles. IEEE Trans Autom Control 11(3):355–361

    Article  Google Scholar 

  • Li K, Ioannou P (2004) Modeling of traffic flow of automated vehicles. IEEE Trans Intell Transp Syst 5(2):99–113

    Article  Google Scholar 

  • Maciejowski JM (2002) Predictive control with constraints. Prentice-Hall, Harlow

    Google Scholar 

  • Messmer A, Papageorgiou M (1990) METANET: a macroscopic simulation program for motorway networks. Traffic Eng Control 31(9):466–470

    Google Scholar 

  • Naus GJL, Vugts R, Ploeg J, van de Molengraft MJG, Steinbuch M (2009) Toward on-the-road implementation of cooperative adaptive cruise control. In: Proceedings of the 16th world congress & exhibition on intelligent transport systems and services, Stockholm

    Google Scholar 

  • Naus GJL, Ploeg J, van de Molengraft MJG, Heemels WPMH, Steinbuch M (2010a) Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach. Control Eng Pract 18(8):882–892

    Article  Google Scholar 

  • Naus GJL, Vugts R, Ploeg J, van de Molengraft MJG, Steinbuch M (2010b) Cooperative adaptive cruise control, design and experiments. In: Proceedings of the American control conference, Baltimore, pp 6145–6150

    Google Scholar 

  • Naus GJL, Vugts R, Ploeg J, van de Molengraft MJG, Steinbuch M (2010c) String-stable CACC design and experimental validation: a frequency-domain approach. IEEE Trans Vehicle Technol 59(9):4268–4279

    Article  Google Scholar 

  • Nguyen HT, Walker EA (1999) A first course in fuzzy logic, 2nd edn. Chapman & Hall, Boca Raton

    Google Scholar 

  • Papageorgiou M (1983) Applications of automatic control concepts to traffic flow modeling and control. Lecture Notes in Control and Information Sciences. Springer, Berlin, Germany

    Google Scholar 

  • Pardalos PM, Resende MGC (2002) Handbook of applied optimization. Oxford University Press, Oxford

    MATH  Google Scholar 

  • PReVENT web site. http://www.prevent-ip.org/. Accessed 15 Nov 2010

  • Rajamani R (2006) Vehicle dynamics and control. Mechanical engineering series. Springer, New York

    Google Scholar 

  • Rao BSY, Varaiya P (1994) Roadside intelligence for flow control in an IVHS. Transp Res C 2(1):49–72

    Article  Google Scholar 

  • Rawlings JB, Mayne DQ (2009) Model predictive control: theory and design. Nob Hill, Madison

    Google Scholar 

  • Ritchie SG (1990) A knowledge-based decision support architecture for advanced traffic management. Transp Res A 24(1):27–37

    Article  Google Scholar 

  • Russell S, Norvig P (2003) Artificial intelligence: a modern approach. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • SafeSpot web site. http://www.safespot-eu.org/. Accessed 15 Nov 2010

  • Sheikholeslam S, Desoer CA (1992) A system level study of the longitudinal control of a platoon of vehicles. ASME J Dyn Syst Meas Control 114(2):286–292

    Article  Google Scholar 

  • Sheikholeslam S, Desoer CA (1993) Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system level study. IEEE Trans Vehicle Technol 42(4):546–554

    Article  Google Scholar 

  • Shladover SE (2007) PATH at 20 – history and major milestones. IEEE Trans Intell Transp Syst 8(4):584–592

    Article  Google Scholar 

  • Stanković SS, Stanojević MJ, Å iljak DD (2000) Decentralized overlapping control of a platoon of vehicles. IEEE Trans Control Syst Technol 8(5):816–832

    Article  Google Scholar 

  • Sussman JM (1993) Intelligent vehicle highway systems: challenge for the future. IEEE Micro 1(14–18):101–104

    Google Scholar 

  • Sussmann HJ, Willems JC (1997) 300 years of optimal control: from the brachystochrone to the maximum principle. IEEE Control Syst Mag 17(3):32–44

    Article  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Swaroop D, Hedrick JK (1996) String stability of interconnected systems. IEEE Trans Autom Control 41(3):349–357

    Article  MathSciNet  MATH  Google Scholar 

  • Swaroop D, Rajagopal KR (1999) Intelligent cruise control systems and traffic flow stability. Transp Res C Emerg Technol 7(6):329–352

    Article  Google Scholar 

  • Swaroop D, Hedrick JK, Chien CC, Ioannou P (1994) A comparison of spacing and headway control laws for automatically controlled vehicles. Veh Syst Dyn 23(1):597–625

    Article  Google Scholar 

  • Swaroop D, Hedrick JK, Choi SB (2001) Direct adaptive longitudinal control of vehicle platoons. IEEE Trans Vehicle Technol 50(1):150–161

    Article  Google Scholar 

  • Toulminet G, Boussuge J, Laurgeau C (2008) Comparative synthesis of the 3 main European projects dealing with cooperative systems (CVIS, SAFESPOT and COOPERS) and description of COOPERS demonstration site 4. In: Proceedings of the 11th IEEE conference on intelligent transportation systems, Beijing, pp 809–814

    Google Scholar 

  • Tsugawa S, Kato S, Tokuda K, Matsui T, Fujii H (2000) An architecture for cooperative driving of automated vehicles. In: Proceedings of the IEEE intelligent transportation symposium, Dearborn, pp 422–427

    Google Scholar 

  • Tsugawa S, Kato S, Tokuda K, Matsui T, Fujii H (2001) A cooperative driving system with automated vehicles and inter-vehicle communications in demo 2000. In: Proceedings of the IEEE conference on intelligent transportation systems, Oakland, pp 918–923

    Google Scholar 

  • Varaiya P (1993) Smart cars on smart roads: problems of control. IEEE Trans Autom Control 38(2):195–207

    Article  MathSciNet  Google Scholar 

  • Varaiya P, Shladover SE (1991) Sketch of an IVHS systems architecture. In: Vehicle navigation and information systems, Dearborn, pp 909–922

    Google Scholar 

  • Venhovens P, Naab K, Adiprasito B (2000) Stop and go cruise control. Int J Automot Technol 1(2):61–69

    Google Scholar 

  • Weiss G (ed) (1999) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Schutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

De Schutter, B., Ploeg, J., Dhevi Baskar, L., Naus, G., Nijmeijer, H. (2012). Hierarchical, Intelligent and Automatic Controls. In: Eskandarian, A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_5

Download citation

Publish with us

Policies and ethics