Advertisement

Safety and Comfort Systems: Introduction and Overview

  • Klaus Kompass
  • Werner Huber
  • Thomas Helmer

Abstract

In recent years, research and development activities of automobile manufacturers have placed an increasing focus on offering intelligent assistance systems in the vehicle. By delivering targeted information and warnings, by delegation of tasks, or by intervention, these functions aim to improve active safety, particularly in complex situations, and/or to enhance the driver’s sense of comfort. The system of driver, vehicle, and environment can be thought of as a control loop with feedback, in which the role of human drivers is decisive in determining the safety potential of this control loop. The safety and comfort characteristics arise for the driver from his interactions with the vehicle and the environment (Bernotat 1970). The human–machine interaction serves as the interface between the driver and the vehicle and also between the driver and the environment. Thus, the design of the human–machine interface is a key determinant of the effectiveness and acceptance of driver assistance systems. Due to the increasing amount of systems in a car, the functional integration of different assistance systems and a higher degree of automation of the functions are expected in future.

Keywords

Control Loop Assistance System Driver Assistance System Machine Interaction Human Driver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alliance of Automobile Manufacturers (2006) Principles, criteria and verification procedures for driver interactions in advanced vehicle information and communication systems. http://www.autoalliance.org/files/DriverFocus.pdf, Accessed 7 July 2010
  2. Belz J, Höver N, Mühlenberg M, Nitsche B, Seubert T (2004) Fahrerassistenz im Spannungsfeld zwischen Komfort- und Sicherheitsanforderungen. Integrierte Sicherheit und Fahrerassistenzsysteme, VDI-Berichte 1864, Düsseldorf, pp 441–468Google Scholar
  3. Bernotat R (1970) Anthropotechnik in der Fahrzeugführung. Ergonomics 13:353–377CrossRefGoogle Scholar
  4. Bubb H (2001) Haptik im Kraftfahrzeug. In: Jürgensohn T, Timpe KP (eds) Kraftfahrzeugführung. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  5. Bubb H (2003) Fahrerassistenz – primär ein Beitrag zu Komfort oder für die Sicherheit? Der Fahrer im 21. Jahrhundert. VDI-Berichte 1768, DüsseldorfGoogle Scholar
  6. Bubb H (1993) Informationswandel durch das system. In: Schmidtke H (ed) Ergonomie. Carl Hanser Verlag, MünchenGoogle Scholar
  7. Donges E (1978) Ein regelungstechnisches Zwei-Ebenen-Modell des menschlichen Lenkverhaltens im Kraftfahrzeug. Z Verkehrssicherheit 24:98–112Google Scholar
  8. Ebner A, Helmer T, Huber W (2009) Bewertung von Aktiver Sicherheit - Definitionen, Referenzsituationen und Messkriterien 1. Automobiltechnisches Kolloquium; München, 16 und 17. April 2009, Technische Universität München-Garching, VDI Wissensforum GmbH, 2009Google Scholar
  9. Ehmanns D, Gelau C, Nicklisch F, Wallentowitz H (2000) Zukünftige Entwicklung von Fahrerassistenzsystemen und Methoden zu deren Bewertung. 9. Aachener Kolloquium Fahrzeug- and MotorentechnikGoogle Scholar
  10. Fuhrmann KH (2006) Fahrerassistenzsysteme: Komfort und Sicherheit Integrierte Sicherheit und Fahrerassistenzsysteme. VDI-Berichte 1960, Düsseldorf, pp 19–34Google Scholar
  11. Helander MG, Zhang L (1997) Field studies of comfort and discomfort in sitting. Ergonomics 40(9):895–915CrossRefGoogle Scholar
  12. Herzberg HTE (1958) Seat Comfort. Annotated bibliography of applied physical anthropology in human engineering. WADC Technical Report 56-30, pp 297–300Google Scholar
  13. Kompass K, Huber W (2006) Wie weit darf Fahrerassistenz gehen? Advanced driver assistance – how far should they go? VDA Technischer Kongress 22.03-22.03 2006Google Scholar
  14. Kompass K, Reichart G (2006) Freude am Fahren zwischen Selbstbestimmung und autonomer Technik AAET 2006 – Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmittel, GZVB BraunschweigGoogle Scholar
  15. Knapp A et al (2009) Code of practice for the design and evaluation of ADAS. http://www.acea.be/images/uploads/files/20090831_Code_of_Practice_ADAS.pdf, Accessed 5 May 2010
  16. Naab K (2000) Automatisierung im straßenverkehr automatisierungstechnik. Oldenbourg Wissenschaftsverlag GmbH, MünchenGoogle Scholar
  17. Naab K, Reichart G (1998) Grundlagen der Fahrerassistenz und Anforderungen aus Nutzersicht. Seminar “Driver assistance systems”, Haus der Technik, Essen, 16./17.11.1998Google Scholar
  18. Peden M, Scurfield R et al (eds) (2004) World report on road traffic injury prevention. WHO, GenevaGoogle Scholar
  19. Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models pullman. IEEE Trans Syst Man Cybern 13(3):257–266Google Scholar
  20. Reichart G (2001) Menschliche zuverlässigkeit beim Führen von Kraftfahrzeugen. VDI Verlag, DüsseldorfGoogle Scholar
  21. Wenzel HG (1993) Klima. In: Schmidtke H (ed) Ergonomie. Carl Hanser Verlag, MünchenGoogle Scholar
  22. WHO (2009) Global status report on road safety: time for action. Geneva, World Health Organization www.who.int/violence_injury_prevention/road_safety_status/2009, Accessed 21 July 2011

Copyright information

© Springer-Verlag London Ltd. 2012

Authors and Affiliations

  1. 1.BMW GroupMunichGermany

Personalised recommendations