• Alfred Pruckner
  • Ralf Stroph
  • Peter Pfeffer
Reference work entry


Competitiveness to a company is given by innovations. The chassis as main part in vehicle design is incisive to the driving behavior of a car. On the one side, mechanical devices are well-engineered which means differentiation to competitors in mechanical devices is complex and costly. On the other side, improvements due to clients and legislator such as driving dynamics, CO2 reduction, or pedestrian protection increase the requirements to the chassis concerning comfort, safety, handling, or individualization by less cost and maintenance.

This balancing act can be done by mechatronics systems which means the interaction of mechanic, electronic, and informatics devices. Basic mechatronics systems are used to assist the driver (e.g., power steering) or to overrule a wrong driver input (e.g., ABS brake). Different from this so-called by-wire systems are extensive mechatronics systems where the vehicle behavior and the driver feedback can be designed independently (there is no mechanical link between input and output).

Drive-by-wire, X-by-wire, or simply by-wire technology is already present nowadays. Starting with aeronautics, where fly-by-wire has been used extensively in the Airbus A320 family without mechanical backup. In passenger cars, by-wire functionality and by-wire systems are far more recent, but still already well known (VDI-Bericht 1828, 2004).

One can distinguish between by-wire functionality and by-wire system. The by-wire functionality can be reduced to the ability to control or even only apply a force by an electrical signal (through an electrical wire) to the vehicle. The definition by-wire system is that the line between the driver’s input interface and the actuation which produces force is partly designed by wire. Hence, in contrast to the by-wire functionality, the system has no permanent hydraulic or mechanic linkage between them.

Common advantages of by-wire systems are the freedom in functionality, package integration, reducing variants, design, and enabler for driver assistance functions. In Sect. 1, these general facts of by-wire systems, the vehicle-driver control loop, and aspects of the input module behavior will be shown. Afterward longitudinal and lateral dynamic systems and their functionality are explained in more detail (Sects. 2 and 3).

One benefit of by-wire systems is the system and functional integration. In Sect. 4 integrated corner modules are illustrated and analyzed as well as integrated control strategy aspects. The challenge of by-wire systems are the functional safety requirements, especially in terms of availability. The latter is the most important for the OEMs and customers. Any minor failure of the systems, which has to be displayed in the dash board, will reduce the customers’ faith in the car. These aspects will be explained in Sect. 5.


Brake System Brake Pedal Wheel Slip Brake Force Antilock Brake System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. Boller HE, Krüger W (1978) Untersuchung eines Bedienelements mit Krafteingabe und Wegrückmeldung bei der manuellen Lenkung von Unterwasserfahrzeugen. Z Arbeitswissenschaften 32:254–260Google Scholar
  2. Breuer B, Bill K-H (2003) Bremsenhandbuch. Vieweg, WiesbadenGoogle Scholar
  3. Bünte T, Odenthal D, Aksun-Güvenç B, Güvenç L (2002) Robust vehicle steering control design based on the disturbance observer. Annu Rev Control 26:139–149CrossRefGoogle Scholar
  4. Continental Media Center. Automotive chassis products, electric hydraulic combi brake. Accessed 19 Oct 2010
  5. Conti Homepage – SBA. Automotive chassis products, regenerative brake system. Accessed 12 Nov 2010
  6. Eberl T, Stroph R, Pruckner A (2011) Analyse unterschiedlicher Bedienkonzepte der Fahrzeuglängsführung bei Elektromobilität, 2. Automobiltechnisches Kolloquium 2011, München, 11–12 Apr 2011Google Scholar
  7. ECE-R 13, Brake System Homologation. United Nations Economic Commission for Europe. Accessed 3 Nov 2010
  8. Eckstein L (2001) Entwicklung und Überprüfung eines Bedienkonzepts und von Algorithmen zum Fahren eines Kraftfahrzeugs mit aktiven Sidesticks, vol 471, Fortschr.-Ber. VDI, Reihe 12. VDI, DüsseldorfGoogle Scholar
  9. Fischle, Stoll, Heinrichs (2002) Bremsen auf höchsten Niveau- Die Sensotronic Brake Control. In: Die neue Mercedes-Benz E-Klasse, ATZ/MTZ Sonderausgabe. Vieweg, WiesbadenGoogle Scholar
  10. Fleck R, Henneckke D, Pauly A (2001) Das steer-by-wire-system der BMW-Group zur Optimierung von Lenkkomfort, Fahrzeugagilität und -stabilität, Haus der Technik, Essen, 3/4 Apr 2001Google Scholar
  11. Fleck R (2003) Methodische Entwicklung mechatronischer Lenksysteme mit Steer-by-Wire Funktionalität. Tagung “,” GarchingGoogle Scholar
  12. Heitzer H-D, Seewald A (2000) Technische Lösungen für Steer-by-Wire Lenksysteme. Aachener Kolloquium, Aachen, Okt 2000Google Scholar
  13. Heitzer H-D, Seewald A (2004) Development of a fault tolerant, steer-by-wire steering system. SAE Nr. 2004-21-0046Google Scholar
  14. Huang P (2004) Regelkonzepte zur Fahrzeugführung unter Einbeziehung der Bedienelementeigenschaften. Dissertation, Fakultät für Maschinenwesen, TU MünchenGoogle Scholar
  15. IEC 61 508. International standard for functional safety. Accessed 9 Nov 2010
  16. ISO 26262. International Organization for Standardization, Standards under development ISO 26262 Part 1 – Part 10. Accessed 12 Nov 2010
  17. Kilgenstein P (2002) Heutige und zukünftige Lenksysteme. Tag des Fahrwerks, Institut für Kraftfahrwesen, AachenGoogle Scholar
  18. Knobel Ch (2009) Optimal Control Allocation for Road Vehicle Dynamics using Wheel Steer Angles, Brake/Drive Torques, Wheel Loads and Camber Angles, vol 696, VDI Reihe 12. VDI, DüsseldorfGoogle Scholar
  19. Koch T (2009) Bewertung des Lenkgefühls in einem Sportfahrzeug mit Steer-by-Wire Lenksystem. In: Aachener Kolloquium 2009, AachenGoogle Scholar
  20. Krueger J (2010) Control Allocation für Straßenfahrzeuge -ein systemunabhängiger Ansatz eines integrierten Fahrdynamikreglers. In: Aachener Kolloquium 2010, AachenGoogle Scholar
  21. Mueller J (2010) Active toe-compensation for by-wire steering systems. In: Tenth international symbosium on advanced vehicle control, Loughbotough, Aug 2010Google Scholar
  22. Odenthal D, Bünte T, Heitzer H-D, Eivker Ch (2003) Übertragung des Lenkgefühls einer Servo-Lenkung auf Steer-by-Wire. Automatisierungstechnik 51(7):329CrossRefGoogle Scholar
  23. Pruckner A (2001) Nichtlineare Fahrzustandsbeobachtung und – regelung einer PKW-Hinterradlenkung, D82. Dissertation RWTH Aachen, Institut für Kraftfahrwesen AachenGoogle Scholar
  24. Prickarz H, Bildstein M (2009) Bremsanlage mit einer Vorrichtung zur optimalen Bremsdosierung. Bosch patent, Offenlegungsschrift DE102008012636Google Scholar
  25. Seewald A (2008) Auf dem Weg zur elektronischen Deichsel. Automobil-Elektronik Dez 2008Google Scholar
  26. Teitzer M, Stroph R, Pruckner A (2010) Simulation of an anti-lock braking system witch electric motors during regenerative braking in powerful BEVs. Chassis Tech Plus, Munich, 8–9 June 2010Google Scholar
  27. Wallbrecher M, Schuster M, Herold P (2008) Das neue Lenksystem von BMW – Die Integral Aktivlenkung. Eine Synthese aus Agilität und Souveränität. In: Aachener Kolloquium 2008, AachenGoogle Scholar
  28. Winner H, Isermann R, Hanselka H, Schürr A (2004) Wann kommt by-Wire auch für Bremse und Lenkung? VDI-Bericht 1828, Autoreg 2004Google Scholar
  29. Zell A et al (2010) Active accelerator pedal as interface to driver. ATZ worldwide eMagazines edition Apr 2010, Accessed 18 Nov 2010Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2012

Authors and Affiliations

  1. 1.BMW Research and DevelopmentMunichGermany
  2. 2.Hochschule MünchenMunichGermany

Personalised recommendations