Advertisement

Nuclear Data Preparation

  • Dermott E. Cullen

Abstract

Today, new evaluated data are almost always prepared in the now universally accepted ENDF/B format. Between the originally evaluated data as coded in the ENDF/B format and our particle transport codes, which actually use the evaluated data, are the often overlooked data-processing codes. These data-processing codes translate and manipulate the data from the single universal ENDF/B format to a variety of formats used by our individual particle transport codes, that is, in contrast to our universally accepted evaluated data format, ENDF/B, as yet there is no universally accepted format used by all of our application codes.

This chapter covers in detail the work done by our data-processing codes to prepare the evaluated data for use in our applications: this includes reconstructing energy-dependent cross sections from resonance parameters, Doppler broadening to a variety of temperatures encountered in real systems, defining data for use in both continuous energy Monte Carlo codes, as well as multigroup Monte Carlo and deterministic methods codes.

In this chapter, both WHAT needs to be done by our data-processing codes and WHY have been defined; also, the overall perspective of a general plan, “The Big Picture,” for the historical and current development of the methods used over the last half century as well as today, has been given.

The importance that processing code verification projects have played over the past decades as well as today has been stressed here. It should be remembered that computer codes have always been very complicated, and it is almost impossible to verify the results calculated by any one code without any comparison with one or more other independently developed codes. A classic mistake is to assume that checking the results will impede progress, whereas in fact experience has shown that taking the time to verify results can actually in the long run lead to savings in time and major improvements in the reliability of our codes.

Keywords

Angular Distribution Total Cross Section Resonance Parameter Elastic Cross Section Scalar Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. U.S. National Bureau of Standards, WashingtonGoogle Scholar
  2. Alder B et al (1963) Methods in computational physics. Academic, New YorkGoogle Scholar
  3. Askew JR et al (1966). J Br Nucl Energy Soc 5:504Google Scholar
  4. Bondarenko II et al (1964) Group constants for nuclear reactor calculations. Consultants Bureau, New YorkGoogle Scholar
  5. Breit G, Wigner EP (1936) Phys Rev 49:519MATHCrossRefGoogle Scholar
  6. Bremblett RL, Czirr JB (1969) Nucl Sci Eng 35:350Google Scholar
  7. Bucholhz JA (1980) Nucl Sci Eng 74:163Google Scholar
  8. Cashwell ED, Everett CJ (1959) A practical manual on the Monte Carlo method for random walk problems. Pergamon Press, New YorkGoogle Scholar
  9. Cashwell ED et al (1972) MCNP: a neutron Monte Carlo code. LA-4751, Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  10. Cullen DE (1973) Nucl Sci Eng 52:498, and exact Doppler broadening of tabulated cross sections. Nucl Sci Eng 60:199 (1975)Google Scholar
  11. Cullen DE (1974) Application of the probability table method to multi-group calculations. Nucl Sci Eng 56:387–400Google Scholar
  12. Cullen DE (1976) Nucl Sci Eng 60:199Google Scholar
  13. Cullen DE (1977a) Calculation of probability table parameters to include intermediate resonance self-shielding, UCRL-79762. Lawrence Livermore National LaboratoryGoogle Scholar
  14. Cullen DE (1977b) Calculation of probability table parameters to include intermediate resonance self-shielding Lawrence Livermore Laboratory Report UCRL-79761, San Francisco, December 1977Google Scholar
  15. Cullen DE (1978a) Multiband calculations of neutron and photo transport, UCRL-52000-78-10, vol 25. Lawrence Livermore National Laboratory, LivermoreCrossRefGoogle Scholar
  16. Cullen DE (1978b) Multi-band parameters and Bondarenko self-shielded cross sections de- rived from the ENDL library. Lawrence Livermore Laboratory Report UCRL-50400, vol 20, 1978Google Scholar
  17. Cullen DE (1979a) DOWNER (version 79–1): group collapse cross sections and transfer matrices, UCRL-50400, vol 127, part F. Lawrence Livermore National LaboratoryGoogle Scholar
  18. Cullen DE (1979b) Program SIGMA1 (version 79-1): Doppler broaden evaluated cross sections in the evaluated nuclear data file/version B (ENDF/B) format, UCRL-50400, vol 17, part B. Lawrence Livermore National Laboratory, LivermoreCrossRefGoogle Scholar
  19. Cullen DE (1979c) Program SIGMAL (version 79-1): Doppler broaden evaluated cross sections in the Livermore evaluated nuclear data library (ENDL) format, UCRL-50400, vol 21, part C. Lawrence Livermore National Laboratory, LivermoreCrossRefGoogle Scholar
  20. Cullen DE (1980a) Program LINEAR (Version 79–1): linearize data in the evaluated nuclear data file/version B (ENDF/B) format, vol 17, part A. UCRL-50400, Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  21. Cullen DE (1980b) Program RECENT (version 79-1): reconstruction of energy dependent neutron cross sections from resonance parameters in the ENDF/B format, UCRL-50400, vol 17, part C. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  22. Cullen DE (1980c) Program, GROUPIE (version 79–1): Calculation of Bondarenko self-shielded cross sections and multiband parameters from data in the ENDF/B format, UCRL-50400, vol 17, part D. Lawrence Livermore National Laboratory, LivermoreCrossRefGoogle Scholar
  23. Cullen DE (1986) Nuclear cross section processing. In: Ronen Y (ed) Handbook of nuclear reactor calculation, vol I. CRC Press, Inc., Boca RatonGoogle Scholar
  24. Cullen DE (1995) A simple model of photon transport. Lawrence Livermore National Laboratory, UCRL-JC-118254, Rev. 1, Sept. 1994; Nucl. Instrum Meth: Phys Res B 101: 499–510Google Scholar
  25. Cullen DE (2005), TART 2005: A coupled neutron–photon 3-D, time dependent, combinatorial geometry Monte Carlo transport code. Lawrence Livermore National Laboratory, UCRL-SM- 218009, November 22, 2005Google Scholar
  26. Cullen DE (2007a) POINT 2007: A temperature dependent ENDF/B-VII.0 data cross section library. Lawrence Livermore National Laboratory, UCRL-TR-228089, online at http://www-nds.iaea.org/point2007Google Scholar
  27. Cullen DE (2007b) PREPRO 2007: 2007 ENDF/B pre-processing codes, IAEA-NDS-39, Rev. 13, Nuclear data section. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  28. Cullen DE (2007c) Application of the probability table method of multi-group calculations, BNL-17000, and BNL-50387 (ENDF-187), Brookhaven, New YorkGoogle Scholar
  29. Cullen DE, Pomraning JRJ (1980) Quant Spectrosc Radiat Transf 24–97Google Scholar
  30. Cullen DE et al (1975) Tabular cross section generation and utilization techniques. In: Proc. nuclear cross sections and technology conference, National Bureau of Standards, WashingtonGoogle Scholar
  31. Cullen DE et al (1976) Major neutron induced interactions: graphical experimental data, UCRL-50400, vol 7, parts A and B, and supplemental neutron induced interactions: graphical experimental data, UCRL-50400, vol 8, parts A and B. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  32. Cullen DE et al (1978) Cross section probability tables in multigroup transport calculations. In: Proc. radiation shielding information center (RSIC) seminar-workshop, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  33. Cullen DE, Howerton RJ, Plechaty EF (1980) Nucl Sci Eng 74:140Google Scholar
  34. Cullen DE et al (1982a) The international reactor dosimetry file (PRDF-82), IAEA-NDS-41 and 48. International Atomic Energy Agency, ViennaGoogle Scholar
  35. Cullen DE et al (1982b) Verification of nuclear cross section processing codes, INDC(NDC)-134. International Atomic Energy Agency, ViennaGoogle Scholar
  36. Cullen DE et al (1985) Report on the IAEA cross section processing code verification project, IAEA, Vienna, INDC(NDS)-170, May 1985Google Scholar
  37. Cullen DE et al (1988) The accuracy of processed nuclear data. Nucl Sci Eng 99:172–181Google Scholar
  38. Cullen DE et al (1991a) Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), Z = 1–100, UCRL-50400, vol 30, Lawrence Livermore National Laboratory, October 1991Google Scholar
  39. Cullen DE et al (1991b) Tables and graphs of electron interaction cross 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), Z = 1–100, Lawrence Livermore National Laboratory, UCRL-50400, vol 31, November 1991Google Scholar
  40. Cullen DE et al (1997) EPDL97: The evaluated photon data library, ’97 version, Lawrence Livermore National Laboratory, UCRL-50400, vol 6, Rev. 5, September 1997Google Scholar
  41. Cullen DE et al (2006) How accurately can we calculate neutrons slowing down in water? Lawrence Livermore National Laboratory, UCRL-TR-220605, April 1, 2006Google Scholar
  42. Cullen DE et al (2007a) Criticality calculations using LANL and LLNL neutron transport codes. Lawrence Livermore National Laboratory, UCRL-TR-237333, November 2007Google Scholar
  43. Cullen DE et al (2007b) ENDF/B-VI.0 data testing for three fast critical assemblies. Lawrence Livermore National Laboratory, UCRL-TR-233310, June 2007Google Scholar
  44. Czirr JB, Bramblett RL (1967) Nucl Sci Eng 28:62Google Scholar
  45. Doyas RJ et al (1971) CLYDE: A code for the production of calculational constants for nuclear data, UCRL-50400, vol 5. Lawrence Livermore National LaboratoryGoogle Scholar
  46. Emmett MB (1975) The MORSE Monte Carlo radiation transport system. ORNL-4972, Oak Ridge National Laboratory, Oak Ridge, see also Fraley SK (1976) User’s guide to MORSE-SOC. ORNL-CSD-7, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  47. Engle WW Jr (1967) A User’s manual for ANISN: A one dimensional discrete ordinate transport code with anisotropic scattering. K-1693, Computing Technology Center, Union Carbide Corporation, Oak RidgeGoogle Scholar
  48. Fowler TB et al (1971) Nuclear rector core analysis code citation. ORNL-TM-2496, Rev. 2, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  49. Friedman B (1961) Principles and techniques of applied mathematics, vol 293. Wiley, New YorkGoogle Scholar
  50. Ganesan S (1982) Private communicationGoogle Scholar
  51. Ganesan S et al (1981) Development if a new fast reactor processing code RHAMBA at RRC, Workshop on nuclear data evaluation, processing and testing, Kalpakkam, India, INDC(IND)-30, International Atomic Energy Agency, ViennaGoogle Scholar
  52. Garber DI, Brewster C (1975) ENDF/B cross sections. BNL-17100 (ENDF-200), 2nd edn. Brookhaven National Laboratory, UptonGoogle Scholar
  53. Garber DI, Kinsey RR (1967) Neutron cross sections, vol 2, curves, 3rd edn. BNL-325, Brookhaven National Laboratory, UptonGoogle Scholar
  54. Glasstone S, Edlund MC (1962) The elements of nuclear reactor theory. Van Nostrand, PrincetonGoogle Scholar
  55. Goel B, Krieg B (1975) Status of the nuclear data library KEDAK-3, KFK-2234. Kernforschung- zentrum, KarlsruheGoogle Scholar
  56. Goldstein R (1972) Nucl Sci Eng 48:248Google Scholar
  57. Goldstein R (1975) Trans Am Nucl Soc 21:493Google Scholar
  58. Goldstein R, Cohen ER (1962) Nucl Sci Eng 13:132Google Scholar
  59. Graves-Morris PR (ed) (1973) Pade approximants and their applications. Academic, New YorkMATHGoogle Scholar
  60. Green DM, Pitterle TA (1968) ETOE: A program for ENDF/B to MC2 data conversion. APDA-219 (ENDF-120), Atomic Power Development Associates, IncGoogle Scholar
  61. Greene NM (1973) Trans Am Nucl Soc 17:549Google Scholar
  62. Greene NM et al (1976) AMPX: a modular code system for generating coupled multigroup neutron–gamma libraries from ENDF/B. ORNL-TM-3706, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  63. Gregson K, James MF (1965) TEMPO – a general Doppler broadening program for neutron cross sections. AEEW-M518, Atomic Energy Establishment, Winfrith, England, UK; the TEMPO results presented here were obtained using Equations 1 through 6 of AEEW-M518; James MF (1975) Private communications, has pointed out that the limits of integration used in the TEMPO code are correctly programmed to be ( − , + )Google Scholar
  64. Gyulassy M et al (1972) Analysis of resolved neutron resonance parameters, m UCRL-50400, vol 12. Lawrence Livermore National LaboratoryGoogle Scholar
  65. Hardie RW, Little WW (1969) 1DX: A one dimensional diffusion code for generating effective nuclear cross sections. BNWL-954, Hanford, WashGoogle Scholar
  66. Hong KJ, Shultis JK (1982) Nucl Sci Eng 80:570Google Scholar
  67. Howerton RJ et al (1975) Evaluation techniques and documentation of specific evaluations of the LLL evaluated nuclear data library (ENDL). UCRL-50400, vol 15. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  68. Howerton RJ et al (1978) The LLL evaluated nuclear data library (ENDL): graphs of cross sections from the library. UCRL-50400, vol 15, part B, rev. 1. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  69. Hutchins BA et al (1973) ENDRUN-II: A computer code to generate a generalized multigroup data file from ENDF/B, GEAP-13704 (ENDF-145). General Electric Company, SunnyvaleGoogle Scholar
  70. Igarasi S et al (1969) Japanese evaluated nuclear data library, version 1, JENDL-1, JAERI-1261, INDC(JAP)-45. Japanese Atomic Energy Research Institute, Tokai-Mura, JapanGoogle Scholar
  71. Jeans J (1948) An introduction to the kinetic theory of gases, 1st edn. Cambridge University Press, LondonGoogle Scholar
  72. Joanou GD et al (1961) GAM-I: a consistent P1 multigroup code of the calculation of the fast neutron spectrum and multigroup constants. GA-1950, General Atomic, La JollaGoogle Scholar
  73. Kinsey R (1970) Data formats and procedures for the evaluated nuclear data file. ENDF, BNL-NCS-50496, ENDF-102, 2nd edn. Brookhaven National Laboratory, UptonGoogle Scholar
  74. Kolesave VE, Nikolaev MN (1977) Sokrator manual: Format of the recommended nuclear data library for reactor calculations. INDC(CCP)-97, International Atomic Energy Agency, ViennaGoogle Scholar
  75. Konshin VA (1981) Application of the nuclear theory to the computation of neutron cross sections for actinide isotopes. In: Nuclear theory for applications, IAEA-SMR-68/I, International Atomic Energy Agency, ViennaGoogle Scholar
  76. Lamb WE (1939) Phys Rev 55:190MATHCrossRefGoogle Scholar
  77. Lathrop KD (1965) DTF-IV: a FORTRAN program for solving the multigroup transport equation with anisotropic scattering. LA-3373, Los Alamos Scientific Laboratory, Los Alamos, NMGoogle Scholar
  78. Lathrop KD, Brinkley FW (1970) Theory and use of the general geometry TWOTRAN program. LA-4432, Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  79. Levitt LB (1972) Nucl Sci Eng 49:450Google Scholar
  80. Lewis FH, Soran PD (1978) Nucl Sci Eng 68:116Google Scholar
  81. Lichtenstein H et al (1979) The SAM-CE Monte Carlo system for radiation transport and criticality calculations in complex configurations (revision 7.0). EPRL-CCM-8, Electric Power Research Institute, Palo AltoGoogle Scholar
  82. MacFarlane RE, Boicourt RM (1975) Trans Am Nucl Soc 33:720Google Scholar
  83. MacFarlane RE, Muir DW (1994) The NJOY nuclear data processing system, version 91. Los Alamos National Laboratory Report LA-12740-M, October 1994 is still the latest official manualGoogle Scholar
  84. MacFarlane RE et al (1982) The NJOY nuclear data processing system, LA-9303-M (ENDF-324). Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  85. Meghreblian RV, Holmes DK (1960) Reactor analysis, vol 137. McGraw-Hill, New YorkGoogle Scholar
  86. Mughabghab SF, Divadeenam M, Holden NE (1981) Neutron cross sections, vol I, Neutron resonance parameters and thermal cross sections. Academic, New YorkGoogle Scholar
  87. Mynatt FR et al (1973) The DOT-III two dimensional discrete ordinate transport code. ORNL-TM-4280, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  88. Nikoleav MN, Phillipov VV (1963) Atom Energy 15:493Google Scholar
  89. Oblozinsky P et al (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nuclear data sheets, vol 107, pp 2931–3060Google Scholar
  90. Otter JM et al (1972) U3R – a code to calculate unresolved resonance cross section probability tables. AI-AEC-13024, Atomics International, San DiegoGoogle Scholar
  91. Ozer O (1973) RESEND: a program to preprocess ENDF/B materials with resonance parameters into a pointwise form. BNL-17134, Brookhaven National Laboratory, UptonGoogle Scholar
  92. Panini G.C (1973) FOURACES – a programme for producing group averaged cross sections from different files, TR/FI(73)16. Comitato Nazionale Energia Nucleare, BologneGoogle Scholar
  93. Patrick BH (1982) Private communication.Google Scholar
  94. Perez RB et al (1981) Trans Am Nucl Soc 39:883Google Scholar
  95. Perkins ST (1982) Nucl Sci Eng 80; Perkins ST, Giles PC Nucl Sci Eng 80:579Google Scholar
  96. Plechaty EF (1977) Monte Carlo criticality calculations of hydrogen moderated uranium systems using the probability table method and multigroup cross section representations, UCID-17455. Lawrence Livermore National LaboratoryGoogle Scholar
  97. Plechaty EF, Kimlinger JR (1971) TART Monte Carlo transport code. UCIR-522, Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  98. Plechaty EF, Kimlinger JR (in press) ALICE multiband Monte Carlo neutron transport code. Law- rence Livermore National Laboratory, LivermoreGoogle Scholar
  99. Plechaty EF et al (1978a) Tables and graphs of photon interaction cross sections from 0.1 keV to 100 MeV, derived the LLL evaluated nuclear data library. UCRL-50400, vol 6, rev. 2. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  100. Plechaty EF et al (1978b) Tabular and graphical presentation of 175 neutron group constants derived from the LLL evaluated neutron data library (ENDL), UCRL-50400, vol 16. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  101. Pope AL (1973) Current edition of the main tape NDL-1 of the UK nuclear data library. AEEW-M-1208. UK Atomic Energy Establishment, WinfrithGoogle Scholar
  102. Pope AL et al (in press) User’s guide for SIGAR7: A FORTRAN programme for calculating resonance cross sections with Doppler broadening, UK. Atomic Energy Establishment, WinfrithGoogle Scholar
  103. Ray EA et al (2005) PARTISN: a time-dependent, parallel neutral particle transport code system. Los Alamos National Laboratory, LA-UR-05–3925, May 2005Google Scholar
  104. Rieffe HC et al (1981) ENTOSAN: a program for the calculation of fine group cross section values for ENDF/B data. Netherlands Energy Research Foundation, PettenGoogle Scholar
  105. Rose PF, Dunford CL (eds) (1990) ENDF-102: data formats and procedures for the evaluated nuclear data file, ENDF-6. Brookhaven National Laboratory Report, BNL-NCS-44945Google Scholar
  106. Seamon RE (1981) Private Communication, Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  107. Shakespeare W (1982) Private communicationGoogle Scholar
  108. Stewart JCJ (1964) Quant. Spectrosc Radiat Transf 4 :723CrossRefGoogle Scholar
  109. Toppel B.J (1971) The new multigroup cross section code MC2-II. In: Proc. Conf. new developments of reactor mathematics and applications, CONF-710302, Idaho Falls, Idaho; see also Henryson H II et al (1976) MC2-II: a code to calculate fast neutron spectra and multigroup cross sections, ANL-8144 (ENDF-239). Argonne National Laboratory, ArgonneGoogle Scholar
  110. Vertes P (1981) FEDGROUP-3: A program system for processing evaluated nuclear data in ENDF/B, KEDAK or UKNDL formats to constants to be used in reactor physics calculations, KFK2-1981-34, Central Research Institute for Physics, BudapestGoogle Scholar
  111. Weinberg AM, Wigner EP (1958) The physical theory of neutron chain reactors, University of Chicago Press, ChicagoGoogle Scholar
  112. Weisbin CR, LaBauve RJ (1973) Specifications of Generally useful multigroup structure for neutron transport. LA-5277MS, Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  113. Weisbin CR et al (1974) Nucl Sci Eng 55:329Google Scholar
  114. Weisbin CR et al (1976) MINX: A multigroup interpretation of nuclear X-sections, from ENDF/B, LA-6486-MS (ENDF-237). Los Alamos National Laboratory, Los AlamosCrossRefGoogle Scholar
  115. Westfall RM (1978) Theory and validation of ROLAIDS: AMPX module for treating resonance shielding in multigroup geometries. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  116. Wigner EP, Wilkins JE Jr (1944) Effect of the temperature of the moderator on the velocity distribution of neutrons with numerical calculation for H as the moderator, AECD-2275. Clinton Laboratory (now Oak Ridge National Laboratory), Oak RidgeGoogle Scholar
  117. X-5 Monte Carlo Team (2003) MCNP – a general Monte Carlo N-particle transport code, version 5, vol I: Overview and theory. Los Alamos National Laboratory Report LA-UR-03–1987, April 24, 2003Google Scholar
  118. Zijp WL et al (1981) Comparison of two fine group cross section libraries resulting from the ENDF/B-VI dosimetry library, ECN-97. Netherlands Energy Research Foundation, PettenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dermott E. Cullen
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations