Skip to main content

Transuranium Elements in the Nuclear Fuel Cycle

  • Reference work entry
Handbook of Nuclear Engineering

Abstract

Transuranium elements, neptunium, plutonium, americium, and curium, are formed via neutron capture processes of actinides, and are mainly by-products of fuel irradiation during the operation of a nuclear reactor. Their properties significantly impact the nuclear fuel cycle, affecting and often determining requirements and procedures related to handling, storage, reprocessing, and disposal of fuels and high-level waste. It is still debated if, in particular, plutonium is an unwanted waste or, possibly, a resource for the production of energy. A standard universally agreed route for the treatment of transuranium elements is not yet established. This chapter provides an overview of past and ongoing experience and perspectives related to studies on transuranic recovery and incorporation in fuels and targets for advanced nuclear fuel cycles and their disposal as the main component of high-level nuclear waste. In particular, the chapter describes the main properties of transuranium fuels, the specific requirements for their fabrication, their irradiation behavior, and their impact on the back-end of the fuel cycle. For the latter, a major issue is the development of options for reprocessing and separation of transuranium elements from spent fuel to make them available for further treatment. The effects caused by their presence in irradiated fuel and high-level nuclear waste on long-term storage and final disposal are also discussed.

The final destination of transuranium elements is still an open issue. The global context is characterized by a diversified set of options being pursued, which is reflected in this chapter. It is important to have a picture of the knowledge and experience gathered until now through relevant investigation campaigns worldwide. This is necessary to ensure that the renewed interest in nuclear energy as a key component of sustainable development of energy production brings the necessary focus to implement viable, safe, and technologically effective options for the treatment of transuranium elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler HP, Ledergerber G, Stratton RW (1987) Advanced fuel for fast breeder reactors produced by gelation methods. IAEA Technical Committee, Vienna

    Google Scholar 

  • Adnet J-M, Miguirditchian M, Hill C (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In: Proceedings of the Global 2005, Paper no. 119, Tsukuba, Japan

    Google Scholar 

  • Anselin F, Calais D, Passefort JC (1965) Survey of uranium-carbon-nickel ternary diagram. In: Report CEA-R2845, France

    Google Scholar 

  • Arab-Chapelet B, Grandjean S, Nowogrocki G, Abraham F (2007) Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions. J Alloys Compd 387:444–445

    Google Scholar 

  • Arab-Chapelet B, Grandjean S, Nowogrocki G, Abraham F (2008) Synthesis and characterization of mixed An(IV)An(III) oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am). J Nucl Mater 373:259–268

    Google Scholar 

  • Arai Y, Nakajima K (2000) Preparation and characterization of PuN pellets containing ZrN and TiN. J Nucl Mater 281: 244–247

    Google Scholar 

  • Arai Y, Minato K (2005) Fabrication and electrochemical behavior of nitride fuel for future applications. J Nucl Mater 344:180–185

    Google Scholar 

  • Arai Y, Fukushima S, Shiowaza K, Handa M (1988) Fabrication of uranium-plutonium mixed nitride and thermally stable carbide fuels. In: Proceedings on advanced fuel for fast breeder reactors, IAEA-TECDOC-466, IAEA, Vienna, p 25

    Google Scholar 

  • Arai Y, Fukushima S, Shiowaza K, Handa M (1989) Fabrication of (U, Pu)N fuel pellets. J Nucl Mater 168:280–289

    Google Scholar 

  • Arai Y, Shiozawa K, Ohmichi T (1992) Preparation of uranium-plutonium mixed nitride pellets with high purity. In: Proceedings of the 4th international symposium on advanced nuclear energy research-roles and direction of material science, Ibaraki, Japan, p 167

    Google Scholar 

  • Arai Y, Iwai T, Nakajima K, Suzuki Y (1997a) Recent progress of nitride fuel development in JAERI-Fuel property, irradiation behaviour and application to dry processing. In: Proceedings of the Global 1997, Yokohama, Japan, p 664

    Google Scholar 

  • Arai K, Yamashita M, Hatta M, Tomiyasu H, Ikeda Y (1997b) Modified TRUEX process for the treatment of high-level liquid waste. J Nucl Sci Technol 34(5):521–526

    Google Scholar 

  • Babelot JF, Chauvin N (1996) Rapport de synthèse commun CEA/ITU sur l’expérience SUPERFACT 1. In: Note technique SDC/LEMC 96-2028, CEA Cadarache

    Google Scholar 

  • Babelot JF, Chauvin N (1999) Report TN-1999-03, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany

    Google Scholar 

  • Bardelle P, Warin D (1992) Mechanism and kinetics of the uranium-plutonium mononitride synthesis. J Nucl Mater 188:36–42

    Google Scholar 

  • Baron P, Masson M, Rostaing C, Boullis B (2007) Advanced separation processes for sustainable nuclear systems. In: Proceedings of the Global 2007, Boise, Idaho, pp 537–540

    Google Scholar 

  • Bart G, Bakker K, Hellwig C, Kihara C, Ozawa T, Wallin H, Shigetome Y (2007) FUJI, an initial sintering comparison test for pelletized-, sphere-pac and vipac-fast breeder reactor mixed oxide fuel. J Nucl Sci Technol 44:329

    Google Scholar 

  • Bart G, Botta FB, Roth CW, Ledergerber G, Mason RE, Stratton RW (2008) AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US fast flux test facility. J Nucl Mater 376:47–59

    Google Scholar 

  • Barton CJ (1960) Solubility of plutonium trifluoride in fused-alkali fluoride-beryllium fluoride mixtures. J Phys Chem 64:306–309

    Google Scholar 

  • Belin RC, Valenza PJ, Raison PE, Tillard M (2008) Synthesis and rietveld structure refinement of americium pyrochlore Am2Zr2O7. J Alloys Compd 448:321–324

    Google Scholar 

  • Beneš O, Konings RJM (2009) Thermodynamic evaluation of the (LiF + NaF + BeF2 + PuF3) system: An actinide burner fuel. J Chem Thermodyn 41:1086–1095

    Google Scholar 

  • Boyer L, Carpena J, Lacout JL (1997) Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ion 95:121–129

    Google Scholar 

  • Breton L, Masson M, Garces E, Desjardins S, Fontaine B, Lacroix B, Martella T, Loubet L, Ohta H, Yokoo T, Ougier M, Glatz JP (2007) METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phénix. In: Proceedings of the Global 2007, Boise, Idaho, p 1333–1340

    Google Scholar 

  • Burkes DE, Fielding RS, Porter DL, Crawford DC, Meyer MK (2009) A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design. J Nucl Mater 389:458–469

    Google Scholar 

  • Bychkov AV, Skiba OV, Mayorshin AA, Kormilitxyn M, Shishalov OV, Zhemkov I, Kisly V, Babikov LG (2002) Burning of minor actinides in fuel cycle of the fast reactor : DOVITA Programme Results of the 10 Year Activities. In: Proceedings of the actinide and fission product partitioning and transmutation, 7th international exchange meeting, Jeju, Republic of Korea

    Google Scholar 

  • Caravaca C, de Córdoba G, Tomás MJ, Rosado M (2007) Electrochemical behaviour of gadolinium ion in molten LiClKCl eutectic. J Nucl Mater 360:25–31

    Google Scholar 

  • Carbajo JJ, Yoder GL, Popov SG, Ivanov VK (2001) A review of the thermophysical properties of MOX and UO2 fuels. J Nucl Mater 299:181–198

    Google Scholar 

  • Carbol P, Cobos-Sabate J, Glatz JP, Ronchi C, Rondinella VV, Wegen DH, Wiss T, Loida A, Metz V, Kienzler B, Spahiu K, Grambow B, Quinones J, Martinez-Esparza A (2005) The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s), high burnup spent fuel and MOX fuel. Technical report SKB TR-05–09, SKB

    Google Scholar 

  • Carbol P, Fors P, Van Winckel S, Spahiu K (2009) Corrosion of irradiated MOX fuel in presence of dissolved H2. J Nucl Mater 392:45–54

    Google Scholar 

  • Carmack J, Porter DL, Chang YI, Hayes SL, Meyer MK, Burkes DE, Lee CB, Mizuno T, Delage F, Somers J (2009) Metallic fuels for advanced reactors. J Nucl Mater 392:139–150

    Google Scholar 

  • Cassayre L, Malmbeck R, Masset P, Rebizant J, Serp J, Soucek P, Glatz J-P (2006) Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes. J Nucl Mater 360: 49–57

    Google Scholar 

  • Caurant D, Majerus O, Loiseau P, Bardez I, Baffier N, Dussossoy JL (2006) Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J Nucl Mater 354:143–162

    Google Scholar 

  • CEA (2004) Les déchets radioactifs à haute activité et à vie longue/Recherches et résultats. Rapport CEA/DEN/DDIN/2004-642

    Google Scholar 

  • Chapelet-Arab B, Grandjean S, Nowogrocki G, Abraham F (2006) Synthesis of new mixed actinides as precursors of actinide oxide solid solutions. In: Proceedings of the Pu futures conference, Montrey, California

    Google Scholar 

  • Chauvin N, Konings RJM, Matzke HJ (1999) Optimisation of inert matrix fuel concepts for americium transmutation. J Nucl Mater 274:105–111

    Google Scholar 

  • Chikalla TD, Eyring L (1967) Dissociation pressures and partial thermodynamic quantities for americium oxides. J Inorg Nucl Chem 29:2281–2293

    Google Scholar 

  • Conocar O, Douyere N, Glatz J-P, Lacquement J, Malmbeck R, Serp J (2006) Promising pyrochemical actinide/lanthanide separation processes using aluminium. Nucl Sci Eng 153: 253–261

    Google Scholar 

  • Crawford D, Porter DL, Hayes SL, Meyer MK, Petti DL, Pasamehmetoglu K (2007a) An approach to fuel development and qualification. J Nucl Mater 371:232–242

    Google Scholar 

  • Crawford D, Porter DL, Hayes SL (2007b) Fuels for sodium-cooled fast reactors: US perspective. J Nucl Mater 371:202–231

    Google Scholar 

  • Croixmarie Y, Abonneau E, Fernández A, Konings RJM, Desmoulière F, Donnet L (2003) Fabrication of transmutation fuels and targets: the ECRIX and CAMIX-COCHIX experience. J Nucl Mater 320:11–17

    Google Scholar 

  • Cui D, Ranebo Y, Low J, Rondinella VV, Pan J, Spahiu K (2009a) Immobilization of radionuclides on iron canister material at simulated near-field conditions. In: Hyatt NC, Pickett DA, Rebak RB (eds) Material research society symposium proceedings: scientific basis for nuclear waste management XXXII, Vol 1124, Boston, pp 111–116

    Google Scholar 

  • Cui D, Low J, Rondinella VV, Spahiu K (2009b) Hydrogen catalytic effects of nanostructured alloy particles in spent fuel on radionuclide immobilization. Appl Cat B: Environ 94:173–178

    Google Scholar 

  • Drain F, Gillet B, Bertolotti G (1999) Oxalate process: the unique way for Plutonium conversion. In: Proceedings of the Global 1999, Jackson Hole, Wyoming

    Google Scholar 

  • Drew M, Hudson MJ, Iveson PB, Russell ML, Madic C (1998) Theoretical and experimental structural studies of the extraction of actinides and lanthanides by tridentate nitrogen ligands containing 1,2,4-triazines or 1,2,4-triazoles. In: Proceedings of the 5th OECD/NEA information exchange meeting on actinide and fission product partitioning and transmutation, SCK-CEN, Mol, Belgium, pp 487–489

    Google Scholar 

  • Drew MG, Guillaneux D, Hudson MJ, Iveson PB, Russell ML, Madic C (2001) Lanthanide(III) complexes of a highly efficient actinide(III) extracting agent - 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine. Inorg Chem Commun 4:12–15

    Google Scholar 

  • Eckhardt RC (2000) Yucca Mountain: look in ten thousand years into the future. Los Alamos Science 26:464–489

    Google Scholar 

  • Edelstein NM, Fuger J, Morss LR (2006) Summary and comparison of the actinide elements. In: Edelstein NM, Fuger J, Katz JJ, Morss LR (eds) The chemistry of the actinide and transactinide elements. Springer, Netherlands

    Google Scholar 

  • Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys 95:5949–5971

    Google Scholar 

  • Eyal Y (1997) A radiation annealing model for maintenance of crystallinity in self-damaged actinide dioxides. In: Baker R, Slate S, Benda G (eds) Radioactive waste management and environmental remediation. American Society of Mechanical Engineering, New York, pp 303–307

    Google Scholar 

  • Fernandez A, Haas D, Konings RJM, Somers J (2002) Transmutation of actinides. J Am Ceram Soc 85:694–696

    Google Scholar 

  • Fernandez A, Haas D, Hiernaut JP, Konings RJM, Nastren C, Ottmar H, Staicu D, Somers J (2006) Overview of ITU work on inert matrix fuels. In: Proceedings of the 9th international information exchange meeting, Nimes, France, p 99

    Google Scholar 

  • Ganguly C (1988) Advanced methods for fabrication of PHWR and LMFBR fuels. BARC Report 1421

    Google Scholar 

  • Ganguly C, Hegde PV (1997) Sol-Gel microsphere pelletisation process for fabrication of (U,Pu)O2, (U,Pu)C and (U,Pu)N fuel pellets for the prototype fast breeder reactor in India. J Sol-Gel Sci Technol 9:285–294

    Google Scholar 

  • Geist A, Hill C, Modolo G, Foreman MRSJ, Gompper K, Weigl M, Hudson MJ (2006) 6,6-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro- benzo[1,2,4]triazin-3-yl) [2,2]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solv Extr Ion Exch 24(4):463–483

    Google Scholar 

  • Georgenthum V, Brillaud J, Chauvin N, Pelletier M, Planck D (2001) Experimental study and modelling of the thermoelastic behaviour of composite fuel in reactors - emphasis on spinel based composites. Prog Nucl Energy 38:317–320

    Google Scholar 

  • Glatz J-P, Song C, He X, Bokelund H, Koch L (1994) Partitioning of actinides from HAW in a continuous process by centrifugal extractors. In: Proceedings of the special symposium on emerging technologies in hazardous waste management, Atlanta, Georgia

    Google Scholar 

  • Gombert D II, Carter J, Cozzi A, Jones R, Matthern G, Nutt M, Priebe S, Sorenson K (2008) Global nuclear energy partnership integrated waste management strategy. GNEP-WAST-AI-RT-2008-000214, US-DOE

    Google Scholar 

  • Gompper K, Geist A, Modolo G, Denecke M, Panak PJ, Weigle M, Fanghänel Th (1995) R&D on partitioning at the German research centers Karlsruhe and Juelich. In: Proceedings of the Global 2005, Paper no. 059, Tsukuba, Japan

    Google Scholar 

  • Grahmann U, Tillessen U, Zimmer E (1975) Technical concept for the refabrication of 233U. In: Proceedings of the German atomforum, Nürnberg, Germany, p387

    Google Scholar 

  • Grandjean S, Robisson A-C, Dauby J, Picart S, Lecomte M, Masson M, Brossard P (2005) Co-conversion of actinides in the frame of generation IV back-end fuel cycle: first results obtained in the CEA-ATALANTE facility. In: Proceedings of the MS7 – 7th international symposium on molten salts chemistry and technology, Toulouse, France

    Google Scholar 

  • Grandjean S, Chapelet-Arab B, Lemonnier S, Robisson A-C, Vigier N (2006) Innovative synthesis methods of mixed actinide compounds: control of the composition homogeneity at a molecular or nanometric scale. In: Sarrao JL, Schwartz AJ, Antonio MR, Burns PC, Haire RG, Nitsche H (eds) Material research society symposium proceedings: actinides 2005 – basic science, applications and technology, Vol 893-JJ08-03.1. Warrendale

    Google Scholar 

  • Grandjean S, Arab-Chapelet B, Robisson A-C, Picart S, Dancausse JP, Baron P, Brossard P, Warin D (2007) Synthesis of mixed actinide compounds by hydrometallurgical co-conversion methods. In: Proceedings of the Global 2007, Boise, Idaho

    Google Scholar 

  • Gras J-M, Quang RD, Masson H, Lieven T, Ferry C, Poinssot C, Debes M, Delbecq J-M (2007) Perspectives on the closed fuel cycle Implications for high-level waste matrices. J Nucl Mater 362:383–394

    Google Scholar 

  • Grouiller JP, Pillon S, de Saint Jean C, Varaine F, Leyval L, Vambenepe G, Carlier B (2003) Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets. J Nucl Mater 320:163–169

    Google Scholar 

  • Guilbaud P, Dognon JP (2000) Molecular dynamics simulations of terpyridine, BTP, and their complexes with La3 +, Eu3 + and Lu3 +. In: Proceedings of the international conference on scientific research on the back-end of the fuel cycle for the 21st century, Atalante 2000, P3-05, Avignon, France

    Google Scholar 

  • Harder BR, Read J, Sowden RG (1965) The reduction and sintering of hyperstoichiometric carbides in hydrogen. J Nucl Mater 17:203–214

    Google Scholar 

  • Hellwig Ch, Pouchon M, Restani E, Ingold F, Bart G (2005) Fabrication and microstructure characterization of inert matrix fuel based on yttria stabilized zirconia. J Nucl Mater 340: 163–170

    Google Scholar 

  • Hellwig Ch, Streit M, Blair P, Tverberg T, Klaassen FC, Schram RPC, Vettraino F, Yamashita T (2006) Inert matrix fuel behaviour in test irradiations. J Nucl Mater 352:291–299

    Google Scholar 

  • Herrmann S, Li S, Simposon M (2007) Electrolytic reduction of spent light water reactor fuel bench-scale experiment results. J Nucl Sci Technol 44(3):361–367

    Google Scholar 

  • Hill C, Hérès X, Calor J-N, Guillaneux D, Mauborgne B, Rat B, Rivalier P, Baron P (1999) Trivalent actinides/lanthanides separation using bis-triazinyl-pyridines. In: Proceedings of the Global 1999, Jackson Hole, Wyoming

    Google Scholar 

  • Hofman GL, Walters LC (1993) Metalic fast reactor fuels. In: Cahn RW, Haasen P, Kramer EJ (eds) Nuclear materials, part I, Materials Science and Technology Vol. 10A, VCH, New York p. 23

    Google Scholar 

  • Hofman GL, Walters L, Bauer TH (1997) Metallic fast reactor fuels. Prog Nucl Energy 31:83–110

    Google Scholar 

  • Holley CE, Rand MH, Storms EK (1984) The chemical thermodynamics of actinide elements and compounds. In: International atomic energy agency the actinide carbides, STI/PUB/424/6, Vienna

    Google Scholar 

  • Horspool JM, Rose NF, Finlayson MB (1967) Fabrication of uranium-plutonium monocarbide ceramics. Proc Br Ceram Soc 7:23–40

    Google Scholar 

  • Iizuka M, Kinoshita K, Koyama T (2005) Modeling of anodic dissolution of U-Pu-Zr ternary alloy in the molten LiCl-KCl electrolyte. J Phys Chem Solids 66:427–432

    Google Scholar 

  • Iizuka M, Sakamura Y, Inoue T (2006) Electrochemical reduction of (U40Pu5Np)O2 in molten LiCl electrolyte. J Nucl Mater 359:102–113

    Google Scholar 

  • Ingold F, Ledergerber G (1994) Preparation of transuranium elements fuel and target materials for the transmutation of actinides by gel co-conversion, PSI Annual Report

    Google Scholar 

  • Jaecki P, Pillon S, Warin D, Hayes SL, Kennedy R, Pasamehmetoglu HO, Voit SL, Hass D, Fernandez A, Arai Y (2005) Update on the FUTURIX-FTA experiment in Phénix. In: Proceedings of the Global 2005, Tsukuba, Japan, 13 Oct.

    Google Scholar 

  • Johnson LH, Poinssot C, Ferry C, Lovera P, Poulesquen A, Miserque F, Corbel C, cavedon JM, Adriambololona Z, Wegen D, Carbol P, Glatz J-P, Cobos-Sabate J, Serrano D, Rondinella VV, Wiss T, Grambow B, Spahiu K, Kelm M, Metz V, Loida A, Kienzler B, Lundstrom T, Christensen H, Jonsson M, de Pablo J, Rovira M, Clarens F, Casas I, Martinez-Esparza A, Gago J, Bruno J, Cera E, Merino J, Gonzalez de la Huebra A, Iglesias E, Quinones J, Cachoir C, Lemmens K, Mayer G, Jegou C (2005) Spent fuel evolution under disposal conditions – synthesis of results from the EU spent fuel stability (SFS) project. Technical Report 04-09, Nagra

    Google Scholar 

  • Jorion F, Maillard C, Martin JC, Donnet L, Drin N (2007) The FUTURIX-FTA experiment in Phénix: status of the oxide fuel fabrication. In: Proceedings of the Global 2007, Boise, Idaho, p 1353

    Google Scholar 

  • Kasemeyer U, Hellwig Ch, Lee Y-W, Ledergerber G, Sohn DS, Gates GA, Wiesenack W (2001) Irradiation test of inert-matrix fuel in comparison to uranium plutonium mixed oxide fuel at the Halden reactor. Prog Nucl Energy 38:309–312

    Google Scholar 

  • Kato T, Inoue T, Iwai T, Arai Y (2006) Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J Nucl Mater 357:105–114

    Google Scholar 

  • Keiser D Jr, Kennedy JR, Hilton BA, Hayes SL (2008) The development of metallic nuclear fuels for transmutation applications: materials challenges. J Miner Metals Mater 60:29–32

    Google Scholar 

  • Kittel JH, Frost BRT, Mustelier JP, Bagley KQ, Crittenden GC, Van Dievoet JJ (1993) History of fast reactor fuel development. Nucl Mater 204:1–13

    Google Scholar 

  • Kleykamp H (1999) Selection of materials as diluents for burning of plutonium fuels in nuclear reactors. J Nucl Mater 275:1–11

    Google Scholar 

  • Kolarik Z, Müllich U, Gassner F (1999) Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl- and 2,6-ditriazinylpyridines. Solv Extr Ion Exch 17(1):23–32

    Google Scholar 

  • Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998a) Trivalent f-element intra-group separation by solvent extraction with CMPO-complexant system. J Nucl Sci Technol 35:130–136

    Google Scholar 

  • Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998b) A counter current experiment for the separation of trivalent actinides and lanthanides by the setfics process. Solv Extr Ion Exch 16(6):1357–1367

    Google Scholar 

  • Konings RJM, Haas D (2002) Fuels and targets for transmutation. C R Phys 3:1013–1022

    Google Scholar 

  • Konings RJM, Conrad R, Dassel G, Pijlgroms B, Somers J, Toscano E (2000) The EFTTRA-T4 experiment on americium transmutation. J Nucl Mater 282:159–170

    Google Scholar 

  • Konings RJM, Malmbeck R, Serp, J (2002) Evaluation of thermochemical and electrochemical data for the pyrochemical partitioning process. J Nucl Sci Technol, (Suppl 2), 906–909

    Google Scholar 

  • Konings RJM, Morss LR, Fuger J (2006) Thermodynamic properties of actinides. In: Edelstein NM, Fuger J, Katz JJ, Morss LR (eds) The chemistry of the actinide and transactinide elements. Springer, Netherlands, pp 2113–2224

    Google Scholar 

  • Kurata M (1999) Thermodynamic assessment of the Pu-U, Pu-Zr, and Pu-U-Zr systems. Calphad 23:305–337

    Google Scholar 

  • Kurata M, Inoue T, Serp J, Ougier M, Glatz J-P (2004) Electro-chemical reduction of MOX in LiCl. J Nucl Mater 328:97–102

    Google Scholar 

  • Kurata M, Sasahara A, Inoue T, Betti M, Babelot JF, Spirlet JC, Koch L (1997) CRIEPI: fabrication of U-Pu-Zr metallic fuel containing minor actinides. In: Proceedings of the Global 1997, Yokohama, Japan, p 1384

    Google Scholar 

  • Lacquement J, Bourg S, Boussier H, Conocar O, Laplace A, Lecomte M, Boullis B, Duhamet J, Grandjean A, Brossard P, Warin D (2005) Progress of the R&D program on pyrochemistry at CEA. In: Proceedings of the Global 2005, Paper no. 153, Tsukuba, Japan

    Google Scholar 

  • Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140

    Google Scholar 

  • Latimer TW, Chidester KM, Stratton RW, Lederberger G, Ingold F (1992) Design and fuel fabrication process for the AC-3 mixed carbide irradiation test. Trans Am Nucl Soc 66:182–186

    Google Scholar 

  • Ledergerber G, Adler HP, Ingold F, Stratton RW (1986) Experience in preparing nuclear fuel by the gelation method. In: ENC’86 Geneva, Transactions, vol 4, p 225

    Google Scholar 

  • Lian J, Chen J, Wang LM, Ewing RC, Farmer JM, Boatner LA, Helean KB (2003) Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys Rev Condens Matter Mater Phys B 68:134107

    Google Scholar 

  • Louwrier KP, Richter K, Kramer G, Lebrun M (1976) Preparation of a highly reactive plutonium dioxide powder for plutonium-uranium-carbide and nitride fuel. J Nucl Mater 61:219–220

    Google Scholar 

  • Lutique S, Konings RJM, Rondinella VV, Somers J, Staicu D, Wiss T (2003) Zirconate pyrochlore as a transmutation target: thermal behaviour and radiation resistance against fission fragment impact. J Nucl Mater 319:59–64

    Google Scholar 

  • MacClean H, Hayes S (2007) Irradiation of metallic and oxide fuels for actinide transmutation in the ATR. In: Proceedings of the Global 2007, Boise, Idaho, p 1341

    Google Scholar 

  • Madic C, Hudson MJ (2004) European EUROPART integrated project on actinide partitioning. In: Proceedings of the OECD-NEA: 8th IEM on actinide and fission product partitioning and transmutation, Las Vegas, Nevada

    Google Scholar 

  • Madic C, Hudson MJ, Liljenzin JO, Glatz J-P, Nannicini R, Facchini A, Kolarik Z, Odoj R (2000) New partitioning techniques for minor actinides. European report, EUR 19149

    Google Scholar 

  • Madic C, Lecomte M, Testard F, Hudson MJ, Liljenzin JO, Sätmark B, Ferrano M, Facchini A, Geist A, Modolo G, Espartero AG, De Mendoza J (2001) “PARTNEW” A European research program (2000–2002) for partitioning of minor actinides from high level liquid wastes. In: Proceedings of the Global 2001, Paris, France

    Google Scholar 

  • Madic C, Lecomte M, Baron P, Boullis B (2002) Separation of long-lived radionuclides from high active nuclear waste. C R Phys 3:797–811

    Google Scholar 

  • Madic C, Testard F, Hudson MJ, Liljenzin JO, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Gonzales-Espartero GA, De Mendoza J (2004) PARTNEW – new solvent extraction processes for minor actinides-final report. CEA-report 6066, France

    Google Scholar 

  • Magill J (2003) Nuclides.net – an integrated environment for computations on radionuclides and their radiation. Springer, Berlin

    Google Scholar 

  • Magill J, Berthou V, Haas D, Galy J, Schenkel R, Wiese H-W, Heusener G, Tommasi J, Youinou G (2003) Impact limits of partitioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste. Nucl Energy 42(5):263–277

    Google Scholar 

  • Mailen JC, Smith FJ, Ferris LM (1971) Solubility of PuF3 in molten 2 LiF-BeF2. J Chem Eng Data 16:68–69

    Google Scholar 

  • Masset P, Bottomley D, Koning RJM, Malmbeck R, Rodrigues A, Serp J, Glatz J-P (2005a) Electrochemistry of uranium in molten LiCl-KCl electric. J Electrochem Soc 152(6):1109–1115

    Google Scholar 

  • Masset P, Konings RJM, Malmbeck R, Serp J, Glatz J-P (2005b) Thermochemical properties of lanthanides (Ln = La, Nd) and actinides (An = U, Np, Pu, Am) in the molten LiClKCl eutectic. J Nucl Mater 344:173–179

    Google Scholar 

  • Matzke HJ (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Eff 64:3–33

    Google Scholar 

  • Matzke HJ (1986) Science of advanced LMFBR fuels. Elsevier, North Holland

    Google Scholar 

  • Maugeri E, Wiss T, Hiernaut J-P, Desai K, Thiriet C, Rondinella VV, Colle J-Y, Konings RJM (2009) Helium solubility and behaviour in uranium dioxide. J Nucl Mater 385:461–466

    Google Scholar 

  • Mayorshin AA, Skibbe OV, Tsykanov VA, Kisly A (2000) Russian experience in using UPUO2 VIBROPAC fuel pins in fast reactors. In: Proceedings of the 8th international conference on the physics of reactor nuclear power (ICONE), Baltimore

    Google Scholar 

  • Mayorshin AA, Skibbe OV, Bychkov AV, Kisly A, Shishalov OV, Kormilitsyn MV, Golovchenko YM (2005) RIAR experience in the field of vibropac fuel use in fast reactors. In: Proceedings of the Global 2005 advanced nuclear fuel cycle and systems, Tsukuba, Japan

    Google Scholar 

  • McCarthy GJ (1977) High level waste ceramics: materials considerations, process simulation and product characterization. Nucl Technol 32:92–105

    Google Scholar 

  • McPheeters C, Pierce RD, Mulcahey TP (1997) Application of the pyrochemical process to recycle of actinides from LWR spent fuel. Prog Nucl Energy 31:175–186

    Google Scholar 

  • Meyer MK, Hayes SL, Carmack WJ, Tsai H (2009) The EBR-II X501 minor actinide burning experiment. J Nucl Mater 392:176–183

    Google Scholar 

  • Miguirditchian M, Chareyre L, Hérès X, Hill C, Baron P, Masson M (2007) GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation. In: Proceedings of the Global 2007, Paper no. 81, Boise, Idaho

    Google Scholar 

  • Minato K, Akabori M, Takano M, Arai Y, Nakajima K, Itoh A, Ogawa T (2003) Fabrication of nitride fuels for transmutation of minor actinides. J Nucl Mater 320:18–24

    Google Scholar 

  • Minato K, Takano M, Otobe H, Nishi T, Akabori M, Arai Y (2009) Thermochemical and thermophysical properties of minor actinide compounds. J Nucl Mater 389:23–28

    Google Scholar 

  • Modolo G, Odoj R (1999) Synergistic selective extraction of actinides(III) over lanthanides from nitric acid using new aromatic diorganyldithiophosphinic acids and neutral organophosphorus compounds. Solv Extr Ion Exch 17(1):33–53

    Google Scholar 

  • Morita Y, Glatz J-P, Kubota M, Koch L (1996) Actinide partitioning from HLW in a continuous DIDPA extraction process by means of centrifugal extractors. Solv Extr Ion Exch 14(3):385–400

    Google Scholar 

  • Morita Y, Yamaguchi I, Fujiwara T, Koizumi H, Tachimori S (2004) A demonstration test of 4-group partitioning process with real high-level liquid waste. In: Proceedings Atalante 2004, Nice, France, 21–25 June, pp 3–37

    Google Scholar 

  • Mukaiyama T, Takano H, Ogawa T, Takizuka T, Mizumoto M (2002) Partitioning and transmutation studies at JAERI both under OMEGA program and high-intensity proton accelerator project. Prog Nucl Energy 40(3):403–413

    Google Scholar 

  • Muller I, Weber WJ, Vance ER, Wicks G, Karraker D (2001) Glass ceramics and composites. In: Hoffman DC (ed) Advances in plutonium chemistry 1967–2000, Chap. 10. American Nuclear Society, La Grange, pp 260–297

    Google Scholar 

  • Muromura T (1982) Carbothermic synthesis of high purity plutonium nitride from plutonium oxide. J Nucl Sci Technol 19:36

    Google Scholar 

  • Nakajima K, Arai Y, Suzuki Y (1997) Vaporization behavior of neptunium mononitride. J Nucl Mater 247:33–36

    Google Scholar 

  • Nash KL (1993) Review of the basic chemistry and recent developments in trivalent f-elements separations. Solv Extr Ion Exch 11(4):729–768

    Google Scholar 

  • NEA (OECD Nuclear Energy Agency) (2008) Nuclear Energy Outlook 2008. OECD Publishing, Issy-les-Moulineaux, France

    Google Scholar 

  • Neck V, Altmaier M, Fanghänel Th (2007) Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen. C R Chim 10:959–977

    Google Scholar 

  • Neeft EAC, Bakker K, Schram RPC, Conrad R, Konings RJM (2003) The EFTTRA-T3 irradiation experiment on inert matrix fuels. J Nucl Mater 320:106–116

    Google Scholar 

  • Nigond L, Musikas C, Cuillerdier C (1994) Extraction by N,N,N,N-tetraalkyl-2 alkyl propane-1,3 diamides. I. H2O, HNO3 and HClO4. Solv Extr Ion Exch 12(2):261–296

    Google Scholar 

  • Noe M, Fuger J (1974) Self-radiation effects on the lattice parameter of 238PuO2. Inorg Nucl Chem Lett 10:7–19

    Google Scholar 

  • Ogawa T, Ohmichi T, Maeda A, Arai Y, Suzuki Y (1995) Vaporization behaviour of (Pu,Am)N. J Alloys Compd 224:55–59

    Google Scholar 

  • Ohta H, Inoue T, Sakamura Y, Kinoshita K. (2005), Pyroprocessing of light water reactor spent fuels based on an electrochemical reduction technology. Nuclear Technology 150(2):153–161

    Google Scholar 

  • Ohta H, Yokoo T, Inoue T, Ougier M, Glatz J-P, Fontaine B, Brunon E, Poncet L, Sudreau F, Warin D (2007a) Irradiation test of fast reactor metal fuel containing minor actinides in Phénix reactor. In: Proceedings of the Global 2007, Paper 043, Boise, Idaho

    Google Scholar 

  • Ohta H, Yokoo T, Ogata T, Inoue T, Ougier M, Glatz JP, Fontaine B, Breton L (2007b) Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at. % burnup. In: Proceedings of the Global 2007, Boise, Idaho, pp 1346–1352

    Google Scholar 

  • Ohta H, Ogata T, Papaioannou D, Kurata M, Koyama T, Rondinella VV and Glatz JP (2009) Development of minor actinide-containing metal fuels. Proceedings of the International Conference Fast Reactors and Related Fuel Cycles: Challenges and Opportunities FR09, 7-11 Dec. 2009, Kyoto, Japan, paper 1222

    Google Scholar 

  • Okamoto Y, Maeda A, Suzuki Y (1993) Self-irradiation damage in PuN. J Nucl Mater 206:94–96

    Google Scholar 

  • Otobe H, Akabori M, Minato K (2008) Oxygen potential measurement of americium oxide by electromotive force method. J Am Ceram Soc 91(6):1981–1985

    Google Scholar 

  • Picard E, Noirot J, Moss RL, Plitz H, Richter K, Rouault J (2000) First in-pile experimental results of high-plutonium-content oxide fuel for plutonium burning in fast reactors. J Nucl Technol 129:1–12

    Google Scholar 

  • Prunier C, Bardelle P, Pages JP, Richter K, Stratton RW, Ledergerber G (1991) European collaboration on mixed nitride fuel. In: Proceedings of the international conference of fast reactors and related fuels, Kyoto, Japan, p 15.9-1

    Google Scholar 

  • Prunier C, Warin D, Stratton R, Ledergerber G (1992) Flow sheet, fabrication and properties comparison of nitride fuel obtained by powder metallurgy and gelation processes. Trans Am Nucl Soc 66:187

    Google Scholar 

  • Prunier C, Warin D, Bauer M, Ledergerber G, Ingold F, Stratton RW, Adler HP (1993) Application of gel co conversion for transuranium elements (Pu, Np, Am) fuel and target preparation. In: Proceedings of the Global 1993, Washington, p 1273

    Google Scholar 

  • Prunier C, Boussard F, Koch L, Coquerelle M (1997) Some specific aspects of homogeneous americium- and neptunium-based fuels transmutation through the outcomes of the superfact experiment in Phénix fast reactor. J Nucl Technol 119:141–148

    Google Scholar 

  • Quiñones J, Iglesias E, Rodriguez N, Nieto J (2008) Influence of the specific surface area on spent nuclear fuel dissolution rates. In: MRS symposium proceedings 1124, Paper no. 1124-Q02-02, Boston; Grambow B (2006) Elements 2:357–364

    Google Scholar 

  • Richter K (1987) Direct pressing: a new method of fabricating MX fuels. In: Vincenzini P (ed) High tech ceramics. Elsevier, Amsterdam

    Google Scholar 

  • Richter K, Coquerelle M, Gabolde J, Werner P (1974) Preparation of high performance non oxide fuels: first results of fast flux experiments DN1. In: IAEA, fuel and fuel elements for fast reactors, vol 1, Vienna, p 71

    Google Scholar 

  • Richter K, Bartscher W, Benedict U, Gueugnon JF, Kutter H, Sari C, Schmidt HE (1978) Report I on swelling in MX type fuels 1973–76. Report EUR 6154 EN

    Google Scholar 

  • Richter K, Kramer G, Gueugnon JF (1979) Plutonium depletion by vapour phase transport in carbothermic reduction processes. Trans Am Nucl Soc 31:213

    Google Scholar 

  • Richter K, Gueugnon J, Kramer G, Sari C, Werner P (1985) Direct pressing: a new method of fabricating MX fuel pellets. J Nucl Technol 70(3):401–407

    Google Scholar 

  • Richter K, Fernandez A, Somers J (1997) Infiltration of highly radioactive materials: a novel approach to the fabrication of targets for the transmutation and incineration of actinides. J Nucl Mater 249:121–127

    Google Scholar 

  • Ringwood E, Kesson SE, Ware NG, Hibberson W, Major A (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278:219–223

    Google Scholar 

  • Rondinella VV, Matzke HJ, Cobos J, Wiss T (2000) Leaching behaviour of UO2 containing a-emitting actinides. Radiochim Acta 88:527–531

    Google Scholar 

  • Rondinella VV, Cobos J, Wiss T, Hiernaut J-P (2003) Studies on spent fuel alterations during storage and radiolysis effects on corrosion behaviour using alpha-doped UO2. In: Proceedings of the ICEM 2003, Paper 4593, Oxford

    Google Scholar 

  • Rondinella VV, Cobos J, Wiss T (2004) Leaching behaviour of low activity alpha-doped UO2. In: MRS symposium proceedings, San Francisco, April 13–16, vol 824, pp 167–173

    Google Scholar 

  • Rondinella VV, Cobos J, Wiss T, Staicu D (2005) Studies on spent fuel alterations during storage and effects on corrosion behaviour. In: Proceedings of the ICEM 2005, Paper 1275, Glasgow

    Google Scholar 

  • Rondinella VV, Wiss T, Hiernaut J-P (2007) Dose rate effects on the accumulation of radiation damage. In: Proceedings of the ICEM 2007, Paper no. 12755-8, Bruges, Belgium

    Google Scholar 

  • Sakamura Y, Kurata M, Inoue T (2006) Electrochemical reduction of UO2 in molten Ca Cl2 or LiCl. J Electrochem Soc 153:D31–D39

    Google Scholar 

  • Sakamura Y, Omori T, Inoue T (2008) Application of electrochemical reduction to produce metal fuel material from actinide oxides. Nucl Technol 162:169–178

    Google Scholar 

  • Salvatores M (1993) The SPIN program at CEA. In: Proceedings of the Global 1993, Seattle, p 548

    Google Scholar 

  • Schmidt HE, Sari C, Richter K, Gerontopoulos P (1986) The thermal conductivity of ovides of uranium, neptunium and americium at elevated temperatures. J Less-Common Met 121:621–630

    Google Scholar 

  • Serp J, Konings RJM, Malmbeck R, Rebizant J, Scheppler C, Glatz J-P (2004) Electrochemical behaviour of plutonium ion in LiCl - KCl eutectic melts. J Electroanal Chem 561:143–148

    Google Scholar 

  • Serrano-Purroy D, Baron P, Christiansen B, Malmbeck R, Sorel C, Glatz J-P (2005) Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim Acta 93:351–355

    Google Scholar 

  • Sickafus E, Minervini L, Grimes RW, Valdez JA, Ishimura M, Li F, McClellan KJ, Hartmann T (2000) Radiation tolerance of complex oxides. Science 289:748–751

    Google Scholar 

  • Smith PK, Peterson DE (1970) High-temperature evaporation and thermodynamic properties of Cm2O3. J Chem Phys 52:4963–4972

    Google Scholar 

  • Somers J, Fernandez A (2005) Fabrication routes for yttria-stabilized zirconia suitable for the production for minor actinide transmutation targets. J Am Ceram Soc 88:827–832

    Google Scholar 

  • Strachan DM, Scheele RD, Kozelisky AE, Sell RL (2003) Effects of self irradiation from 238Pu on candidate ceramics for plutonium immobilization. PNNL-14232, Pacific Northwest National Laboratory, Richland, WA

    Google Scholar 

  • Suzuki Y, Arai Y, Okamoto Y, Ohmichi T (1994) Preparation of neptunium mononitride by carbothermic reduction. J Nucl Sci Technol 31:677–680

    Google Scholar 

  • Takanashi M, Homma S, Koga J, Matsumoto S (1998) Neptunium concentration profiles in the Purex process. J Alloys Compd 689:271–273

    Google Scholar 

  • Takano M, Itoh A, Akabori M, Ogawa T, Kuikkawa S, Ogamoto H (1999) Synthesis of americium mononitride by carbothermic reduction. In: Proceedings of the Global 1999, Jackson Hole, Wyoming

    Google Scholar 

  • Takano M, Itoh A, Akabori M, Ogawa T, Numata M, Okamoto H (2001) Carbothermic synthesis of (Cm,Pu)N. J Nucl Mater 294:24–27

    Google Scholar 

  • Takano M, Itoh A, Akabori M, Minato K, Numata M (2003) Study of the stability of AmN and (ZrAm)N. In: Proceedings of the Global 2003, New Orleans, p 2285

    Google Scholar 

  • Tanaka K, Maeda K, Katsuyama K, Inoue M, Iwai T, Arai Y (2004) Fission gas release and swelling in uraniumplutonium mixed nitride fuels. J Nucl Mater 327:77–87

    Google Scholar 

  • Tanaka K, Osaka M, Sato I, Miwa S, Koyama S, Ishi Y, Hirosawa T, Obayashi H, Yoshimochi H (2007) Research and development of americium containing mixed oxide fuel for fast reactors. In: Proceedings of the Global 2007, Boise, Idaho p 897

    Google Scholar 

  • Tanaka K, Miwa S, Sato I, Hirosawa T, Obayashi H, Koyama S, Yoshimochi H, Tanaka K (2009) Microstructure and elemental distribution of americium-containing uranium plutonium mixed oxide fuel under a short-term irradiation test in a fast reactor. J Nucl Mater 385:407–412

    Google Scholar 

  • Vance E (2007) Development of ceramic waste forms for high-level nuclear waste over the last 30 years. In: Dunn D, Poinssot C, Begg B (eds) MRS symposium proceedings 985, pp 135–140, Boston, USA, Nov. 27-Dec. 1

    Google Scholar 

  • Vollath D (1977) Vorgnge bei der karbothermischen synthese von uran-plutoniumkarbid. J Nucl Mater 64:27–36

    Google Scholar 

  • Wald JW, Weber WJ (1984) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaTrTi2O7. In: Wicks GG, Ross WA (eds) Advances in ceramics, vol 8. American Ceramic Society, Columbus, Ohio, pp 71–75

    Google Scholar 

  • Walker CT, Nicolaou G (1995) Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the superfact fuels. J Nucl Mater 218:129–138

    Google Scholar 

  • Warin D, Conrad R, Haas D, Heusener G, Martin P, Konings RJM, Schram RPC, Vambenepe G (2001) 10 YEARS EFTTRA: 1992–2001. In: Proceedings of the Global 2001, Paris, France

    Google Scholar 

  • Weber WJ (1981) Ingrowth of lattice defects in alpha irradiated UO2 single crystals. J Nucl Mater 98:206–215

    Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Matzke HJ, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Google Scholar 

  • Weber WJ, Navrotsky A, Stefanovsky S, Vance ER, Vernaz E (2009) Materials science of high-level nuclear waste immobilization. MRS Bull 34:46–53

    Google Scholar 

  • Wiss T, Konings RJM, Walker CT, Thiele H (2003) Microstructure characterisation of irradiated Am-containing MgAl2O4 (EFTTRA-T4). J Nucl Mater 320:85–95

    Google Scholar 

  • Wiss T, Deschanels X, Hiernaut J-P, Roudil D, Peuget S, Rondinella VV (2007) Helium release from plutonium and curium-doped zirconolite. J Nucl Mater 362: 431–437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Fanghänel, T., Glatz, JP., Konings, R.J.M., Rondinella, V.V., Somers, J. (2010). Transuranium Elements in the Nuclear Fuel Cycle. In: Cacuci, D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98149-9_26

Download citation

Publish with us

Policies and ethics