Transuranium Elements in the Nuclear Fuel Cycle

  • Thomas Fanghänel
  • Jean-Paul Glatz
  • Rudy J. M. Konings
  • Vincenzo V. Rondinella
  • Joe Somers
Reference work entry


Transuranium elements, neptunium, plutonium, americium, and curium, are formed via neutron capture processes of actinides, and are mainly by-products of fuel irradiation during the operation of a nuclear reactor. Their properties significantly impact the nuclear fuel cycle, affecting and often determining requirements and procedures related to handling, storage, reprocessing, and disposal of fuels and high-level waste. It is still debated if, in particular, plutonium is an unwanted waste or, possibly, a resource for the production of energy. A standard universally agreed route for the treatment of transuranium elements is not yet established. This chapter provides an overview of past and ongoing experience and perspectives related to studies on transuranic recovery and incorporation in fuels and targets for advanced nuclear fuel cycles and their disposal as the main component of high-level nuclear waste. In particular, the chapter describes the main properties of transuranium fuels, the specific requirements for their fabrication, their irradiation behavior, and their impact on the back-end of the fuel cycle. For the latter, a major issue is the development of options for reprocessing and separation of transuranium elements from spent fuel to make them available for further treatment. The effects caused by their presence in irradiated fuel and high-level nuclear waste on long-term storage and final disposal are also discussed.

The final destination of transuranium elements is still an open issue. The global context is characterized by a diversified set of options being pursued, which is reflected in this chapter. It is important to have a picture of the knowledge and experience gathered until now through relevant investigation campaigns worldwide. This is necessary to ensure that the renewed interest in nuclear energy as a key component of sustainable development of energy production brings the necessary focus to implement viable, safe, and technologically effective options for the treatment of transuranium elements.


Molten Salt Fission Product Fuel Cycle Spend Fuel Waste Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler HP, Ledergerber G, Stratton RW (1987) Advanced fuel for fast breeder reactors produced by gelation methods. IAEA Technical Committee, ViennaGoogle Scholar
  2. Adnet J-M, Miguirditchian M, Hill C (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In: Proceedings of the Global 2005, Paper no. 119, Tsukuba, JapanGoogle Scholar
  3. Anselin F, Calais D, Passefort JC (1965) Survey of uranium-carbon-nickel ternary diagram. In: Report CEA-R2845, FranceGoogle Scholar
  4. Arab-Chapelet B, Grandjean S, Nowogrocki G, Abraham F (2007) Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions. J Alloys Compd 387:444–445Google Scholar
  5. Arab-Chapelet B, Grandjean S, Nowogrocki G, Abraham F (2008) Synthesis and characterization of mixed An(IV)An(III) oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am). J Nucl Mater 373:259–268Google Scholar
  6. Arai Y, Nakajima K (2000) Preparation and characterization of PuN pellets containing ZrN and TiN. J Nucl Mater 281: 244–247Google Scholar
  7. Arai Y, Minato K (2005) Fabrication and electrochemical behavior of nitride fuel for future applications. J Nucl Mater 344:180–185Google Scholar
  8. Arai Y, Fukushima S, Shiowaza K, Handa M (1988) Fabrication of uranium-plutonium mixed nitride and thermally stable carbide fuels. In: Proceedings on advanced fuel for fast breeder reactors, IAEA-TECDOC-466, IAEA, Vienna, p 25Google Scholar
  9. Arai Y, Fukushima S, Shiowaza K, Handa M (1989) Fabrication of (U, Pu)N fuel pellets. J Nucl Mater 168:280–289Google Scholar
  10. Arai Y, Shiozawa K, Ohmichi T (1992) Preparation of uranium-plutonium mixed nitride pellets with high purity. In: Proceedings of the 4th international symposium on advanced nuclear energy research-roles and direction of material science, Ibaraki, Japan, p 167Google Scholar
  11. Arai Y, Iwai T, Nakajima K, Suzuki Y (1997a) Recent progress of nitride fuel development in JAERI-Fuel property, irradiation behaviour and application to dry processing. In: Proceedings of the Global 1997, Yokohama, Japan, p 664Google Scholar
  12. Arai K, Yamashita M, Hatta M, Tomiyasu H, Ikeda Y (1997b) Modified TRUEX process for the treatment of high-level liquid waste. J Nucl Sci Technol 34(5):521–526Google Scholar
  13. Babelot JF, Chauvin N (1996) Rapport de synthèse commun CEA/ITU sur l’expérience SUPERFACT 1. In: Note technique SDC/LEMC 96-2028, CEA CadaracheGoogle Scholar
  14. Babelot JF, Chauvin N (1999) Report TN-1999-03, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, GermanyGoogle Scholar
  15. Bardelle P, Warin D (1992) Mechanism and kinetics of the uranium-plutonium mononitride synthesis. J Nucl Mater 188:36–42Google Scholar
  16. Baron P, Masson M, Rostaing C, Boullis B (2007) Advanced separation processes for sustainable nuclear systems. In: Proceedings of the Global 2007, Boise, Idaho, pp 537–540Google Scholar
  17. Bart G, Bakker K, Hellwig C, Kihara C, Ozawa T, Wallin H, Shigetome Y (2007) FUJI, an initial sintering comparison test for pelletized-, sphere-pac and vipac-fast breeder reactor mixed oxide fuel. J Nucl Sci Technol 44:329Google Scholar
  18. Bart G, Botta FB, Roth CW, Ledergerber G, Mason RE, Stratton RW (2008) AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US fast flux test facility. J Nucl Mater 376:47–59Google Scholar
  19. Barton CJ (1960) Solubility of plutonium trifluoride in fused-alkali fluoride-beryllium fluoride mixtures. J Phys Chem 64:306–309Google Scholar
  20. Belin RC, Valenza PJ, Raison PE, Tillard M (2008) Synthesis and rietveld structure refinement of americium pyrochlore Am2Zr2O7. J Alloys Compd 448:321–324Google Scholar
  21. Beneš O, Konings RJM (2009) Thermodynamic evaluation of the (LiF + NaF + BeF2 + PuF3) system: An actinide burner fuel. J Chem Thermodyn 41:1086–1095Google Scholar
  22. Boyer L, Carpena J, Lacout JL (1997) Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ion 95:121–129Google Scholar
  23. Breton L, Masson M, Garces E, Desjardins S, Fontaine B, Lacroix B, Martella T, Loubet L, Ohta H, Yokoo T, Ougier M, Glatz JP (2007) METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phénix. In: Proceedings of the Global 2007, Boise, Idaho, p 1333–1340Google Scholar
  24. Burkes DE, Fielding RS, Porter DL, Crawford DC, Meyer MK (2009) A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design. J Nucl Mater 389:458–469Google Scholar
  25. Bychkov AV, Skiba OV, Mayorshin AA, Kormilitxyn M, Shishalov OV, Zhemkov I, Kisly V, Babikov LG (2002) Burning of minor actinides in fuel cycle of the fast reactor : DOVITA Programme Results of the 10 Year Activities. In: Proceedings of the actinide and fission product partitioning and transmutation, 7th international exchange meeting, Jeju, Republic of KoreaGoogle Scholar
  26. Caravaca C, de Córdoba G, Tomás MJ, Rosado M (2007) Electrochemical behaviour of gadolinium ion in molten LiClKCl eutectic. J Nucl Mater 360:25–31Google Scholar
  27. Carbajo JJ, Yoder GL, Popov SG, Ivanov VK (2001) A review of the thermophysical properties of MOX and UO2 fuels. J Nucl Mater 299:181–198Google Scholar
  28. Carbol P, Cobos-Sabate J, Glatz JP, Ronchi C, Rondinella VV, Wegen DH, Wiss T, Loida A, Metz V, Kienzler B, Spahiu K, Grambow B, Quinones J, Martinez-Esparza A (2005) The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s), high burnup spent fuel and MOX fuel. Technical report SKB TR-05–09, SKBGoogle Scholar
  29. Carbol P, Fors P, Van Winckel S, Spahiu K (2009) Corrosion of irradiated MOX fuel in presence of dissolved H2. J Nucl Mater 392:45–54Google Scholar
  30. Carmack J, Porter DL, Chang YI, Hayes SL, Meyer MK, Burkes DE, Lee CB, Mizuno T, Delage F, Somers J (2009) Metallic fuels for advanced reactors. J Nucl Mater 392:139–150Google Scholar
  31. Cassayre L, Malmbeck R, Masset P, Rebizant J, Serp J, Soucek P, Glatz J-P (2006) Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes. J Nucl Mater 360: 49–57Google Scholar
  32. Caurant D, Majerus O, Loiseau P, Bardez I, Baffier N, Dussossoy JL (2006) Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J Nucl Mater 354:143–162Google Scholar
  33. CEA (2004) Les déchets radioactifs à haute activité et à vie longue/Recherches et résultats. Rapport CEA/DEN/DDIN/2004-642Google Scholar
  34. Chapelet-Arab B, Grandjean S, Nowogrocki G, Abraham F (2006) Synthesis of new mixed actinides as precursors of actinide oxide solid solutions. In: Proceedings of the Pu futures conference, Montrey, CaliforniaGoogle Scholar
  35. Chauvin N, Konings RJM, Matzke HJ (1999) Optimisation of inert matrix fuel concepts for americium transmutation. J Nucl Mater 274:105–111Google Scholar
  36. Chikalla TD, Eyring L (1967) Dissociation pressures and partial thermodynamic quantities for americium oxides. J Inorg Nucl Chem 29:2281–2293Google Scholar
  37. Conocar O, Douyere N, Glatz J-P, Lacquement J, Malmbeck R, Serp J (2006) Promising pyrochemical actinide/lanthanide separation processes using aluminium. Nucl Sci Eng 153: 253–261Google Scholar
  38. Crawford D, Porter DL, Hayes SL, Meyer MK, Petti DL, Pasamehmetoglu K (2007a) An approach to fuel development and qualification. J Nucl Mater 371:232–242Google Scholar
  39. Crawford D, Porter DL, Hayes SL (2007b) Fuels for sodium-cooled fast reactors: US perspective. J Nucl Mater 371:202–231Google Scholar
  40. Croixmarie Y, Abonneau E, Fernández A, Konings RJM, Desmoulière F, Donnet L (2003) Fabrication of transmutation fuels and targets: the ECRIX and CAMIX-COCHIX experience. J Nucl Mater 320:11–17Google Scholar
  41. Cui D, Ranebo Y, Low J, Rondinella VV, Pan J, Spahiu K (2009a) Immobilization of radionuclides on iron canister material at simulated near-field conditions. In: Hyatt NC, Pickett DA, Rebak RB (eds) Material research society symposium proceedings: scientific basis for nuclear waste management XXXII, Vol 1124, Boston, pp 111–116Google Scholar
  42. Cui D, Low J, Rondinella VV, Spahiu K (2009b) Hydrogen catalytic effects of nanostructured alloy particles in spent fuel on radionuclide immobilization. Appl Cat B: Environ 94:173–178Google Scholar
  43. Drain F, Gillet B, Bertolotti G (1999) Oxalate process: the unique way for Plutonium conversion. In: Proceedings of the Global 1999, Jackson Hole, WyomingGoogle Scholar
  44. Drew M, Hudson MJ, Iveson PB, Russell ML, Madic C (1998) Theoretical and experimental structural studies of the extraction of actinides and lanthanides by tridentate nitrogen ligands containing 1,2,4-triazines or 1,2,4-triazoles. In: Proceedings of the 5th OECD/NEA information exchange meeting on actinide and fission product partitioning and transmutation, SCK-CEN, Mol, Belgium, pp 487–489Google Scholar
  45. Drew MG, Guillaneux D, Hudson MJ, Iveson PB, Russell ML, Madic C (2001) Lanthanide(III) complexes of a highly efficient actinide(III) extracting agent - 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine. Inorg Chem Commun 4:12–15Google Scholar
  46. Eckhardt RC (2000) Yucca Mountain: look in ten thousand years into the future. Los Alamos Science 26:464–489Google Scholar
  47. Edelstein NM, Fuger J, Morss LR (2006) Summary and comparison of the actinide elements. In: Edelstein NM, Fuger J, Katz JJ, Morss LR (eds) The chemistry of the actinide and transactinide elements. Springer, NetherlandsGoogle Scholar
  48. Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys 95:5949–5971Google Scholar
  49. Eyal Y (1997) A radiation annealing model for maintenance of crystallinity in self-damaged actinide dioxides. In: Baker R, Slate S, Benda G (eds) Radioactive waste management and environmental remediation. American Society of Mechanical Engineering, New York, pp 303–307Google Scholar
  50. Fernandez A, Haas D, Konings RJM, Somers J (2002) Transmutation of actinides. J Am Ceram Soc 85:694–696Google Scholar
  51. Fernandez A, Haas D, Hiernaut JP, Konings RJM, Nastren C, Ottmar H, Staicu D, Somers J (2006) Overview of ITU work on inert matrix fuels. In: Proceedings of the 9th international information exchange meeting, Nimes, France, p 99Google Scholar
  52. Ganguly C (1988) Advanced methods for fabrication of PHWR and LMFBR fuels. BARC Report 1421Google Scholar
  53. Ganguly C, Hegde PV (1997) Sol-Gel microsphere pelletisation process for fabrication of (U,Pu)O2, (U,Pu)C and (U,Pu)N fuel pellets for the prototype fast breeder reactor in India. J Sol-Gel Sci Technol 9:285–294Google Scholar
  54. Geist A, Hill C, Modolo G, Foreman MRSJ, Gompper K, Weigl M, Hudson MJ (2006) 6,6-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro- benzo[1,2,4]triazin-3-yl) [2,2]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solv Extr Ion Exch 24(4):463–483Google Scholar
  55. Georgenthum V, Brillaud J, Chauvin N, Pelletier M, Planck D (2001) Experimental study and modelling of the thermoelastic behaviour of composite fuel in reactors - emphasis on spinel based composites. Prog Nucl Energy 38:317–320Google Scholar
  56. Glatz J-P, Song C, He X, Bokelund H, Koch L (1994) Partitioning of actinides from HAW in a continuous process by centrifugal extractors. In: Proceedings of the special symposium on emerging technologies in hazardous waste management, Atlanta, GeorgiaGoogle Scholar
  57. Gombert D II, Carter J, Cozzi A, Jones R, Matthern G, Nutt M, Priebe S, Sorenson K (2008) Global nuclear energy partnership integrated waste management strategy. GNEP-WAST-AI-RT-2008-000214, US-DOEGoogle Scholar
  58. Gompper K, Geist A, Modolo G, Denecke M, Panak PJ, Weigle M, Fanghänel Th (1995) R&D on partitioning at the German research centers Karlsruhe and Juelich. In: Proceedings of the Global 2005, Paper no. 059, Tsukuba, JapanGoogle Scholar
  59. Grahmann U, Tillessen U, Zimmer E (1975) Technical concept for the refabrication of 233U. In: Proceedings of the German atomforum, Nürnberg, Germany, p387Google Scholar
  60. Grandjean S, Robisson A-C, Dauby J, Picart S, Lecomte M, Masson M, Brossard P (2005) Co-conversion of actinides in the frame of generation IV back-end fuel cycle: first results obtained in the CEA-ATALANTE facility. In: Proceedings of the MS7 – 7th international symposium on molten salts chemistry and technology, Toulouse, FranceGoogle Scholar
  61. Grandjean S, Chapelet-Arab B, Lemonnier S, Robisson A-C, Vigier N (2006) Innovative synthesis methods of mixed actinide compounds: control of the composition homogeneity at a molecular or nanometric scale. In: Sarrao JL, Schwartz AJ, Antonio MR, Burns PC, Haire RG, Nitsche H (eds) Material research society symposium proceedings: actinides 2005 – basic science, applications and technology, Vol 893-JJ08-03.1. WarrendaleGoogle Scholar
  62. Grandjean S, Arab-Chapelet B, Robisson A-C, Picart S, Dancausse JP, Baron P, Brossard P, Warin D (2007) Synthesis of mixed actinide compounds by hydrometallurgical co-conversion methods. In: Proceedings of the Global 2007, Boise, IdahoGoogle Scholar
  63. Gras J-M, Quang RD, Masson H, Lieven T, Ferry C, Poinssot C, Debes M, Delbecq J-M (2007) Perspectives on the closed fuel cycle Implications for high-level waste matrices. J Nucl Mater 362:383–394Google Scholar
  64. Grouiller JP, Pillon S, de Saint Jean C, Varaine F, Leyval L, Vambenepe G, Carlier B (2003) Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets. J Nucl Mater 320:163–169Google Scholar
  65. Guilbaud P, Dognon JP (2000) Molecular dynamics simulations of terpyridine, BTP, and their complexes with La3 +, Eu3 + and Lu3 +. In: Proceedings of the international conference on scientific research on the back-end of the fuel cycle for the 21st century, Atalante 2000, P3-05, Avignon, FranceGoogle Scholar
  66. Harder BR, Read J, Sowden RG (1965) The reduction and sintering of hyperstoichiometric carbides in hydrogen. J Nucl Mater 17:203–214Google Scholar
  67. Hellwig Ch, Pouchon M, Restani E, Ingold F, Bart G (2005) Fabrication and microstructure characterization of inert matrix fuel based on yttria stabilized zirconia. J Nucl Mater 340: 163–170Google Scholar
  68. Hellwig Ch, Streit M, Blair P, Tverberg T, Klaassen FC, Schram RPC, Vettraino F, Yamashita T (2006) Inert matrix fuel behaviour in test irradiations. J Nucl Mater 352:291–299Google Scholar
  69. Herrmann S, Li S, Simposon M (2007) Electrolytic reduction of spent light water reactor fuel bench-scale experiment results. J Nucl Sci Technol 44(3):361–367Google Scholar
  70. Hill C, Hérès X, Calor J-N, Guillaneux D, Mauborgne B, Rat B, Rivalier P, Baron P (1999) Trivalent actinides/lanthanides separation using bis-triazinyl-pyridines. In: Proceedings of the Global 1999, Jackson Hole, WyomingGoogle Scholar
  71. Hofman GL, Walters LC (1993) Metalic fast reactor fuels. In: Cahn RW, Haasen P, Kramer EJ (eds) Nuclear materials, part I, Materials Science and Technology Vol. 10A, VCH, New York p. 23Google Scholar
  72. Hofman GL, Walters L, Bauer TH (1997) Metallic fast reactor fuels. Prog Nucl Energy 31:83–110Google Scholar
  73. Holley CE, Rand MH, Storms EK (1984) The chemical thermodynamics of actinide elements and compounds. In: International atomic energy agency the actinide carbides, STI/PUB/424/6, ViennaGoogle Scholar
  74. Horspool JM, Rose NF, Finlayson MB (1967) Fabrication of uranium-plutonium monocarbide ceramics. Proc Br Ceram Soc 7:23–40Google Scholar
  75. Iizuka M, Kinoshita K, Koyama T (2005) Modeling of anodic dissolution of U-Pu-Zr ternary alloy in the molten LiCl-KCl electrolyte. J Phys Chem Solids 66:427–432Google Scholar
  76. Iizuka M, Sakamura Y, Inoue T (2006) Electrochemical reduction of (U40Pu5Np)O2 in molten LiCl electrolyte. J Nucl Mater 359:102–113Google Scholar
  77. Ingold F, Ledergerber G (1994) Preparation of transuranium elements fuel and target materials for the transmutation of actinides by gel co-conversion, PSI Annual ReportGoogle Scholar
  78. Jaecki P, Pillon S, Warin D, Hayes SL, Kennedy R, Pasamehmetoglu HO, Voit SL, Hass D, Fernandez A, Arai Y (2005) Update on the FUTURIX-FTA experiment in Phénix. In: Proceedings of the Global 2005, Tsukuba, Japan, 13 Oct.Google Scholar
  79. Johnson LH, Poinssot C, Ferry C, Lovera P, Poulesquen A, Miserque F, Corbel C, cavedon JM, Adriambololona Z, Wegen D, Carbol P, Glatz J-P, Cobos-Sabate J, Serrano D, Rondinella VV, Wiss T, Grambow B, Spahiu K, Kelm M, Metz V, Loida A, Kienzler B, Lundstrom T, Christensen H, Jonsson M, de Pablo J, Rovira M, Clarens F, Casas I, Martinez-Esparza A, Gago J, Bruno J, Cera E, Merino J, Gonzalez de la Huebra A, Iglesias E, Quinones J, Cachoir C, Lemmens K, Mayer G, Jegou C (2005) Spent fuel evolution under disposal conditions – synthesis of results from the EU spent fuel stability (SFS) project. Technical Report 04-09, NagraGoogle Scholar
  80. Jorion F, Maillard C, Martin JC, Donnet L, Drin N (2007) The FUTURIX-FTA experiment in Phénix: status of the oxide fuel fabrication. In: Proceedings of the Global 2007, Boise, Idaho, p 1353Google Scholar
  81. Kasemeyer U, Hellwig Ch, Lee Y-W, Ledergerber G, Sohn DS, Gates GA, Wiesenack W (2001) Irradiation test of inert-matrix fuel in comparison to uranium plutonium mixed oxide fuel at the Halden reactor. Prog Nucl Energy 38:309–312Google Scholar
  82. Kato T, Inoue T, Iwai T, Arai Y (2006) Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J Nucl Mater 357:105–114Google Scholar
  83. Keiser D Jr, Kennedy JR, Hilton BA, Hayes SL (2008) The development of metallic nuclear fuels for transmutation applications: materials challenges. J Miner Metals Mater 60:29–32Google Scholar
  84. Kittel JH, Frost BRT, Mustelier JP, Bagley KQ, Crittenden GC, Van Dievoet JJ (1993) History of fast reactor fuel development. Nucl Mater 204:1–13Google Scholar
  85. Kleykamp H (1999) Selection of materials as diluents for burning of plutonium fuels in nuclear reactors. J Nucl Mater 275:1–11Google Scholar
  86. Kolarik Z, Müllich U, Gassner F (1999) Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl- and 2,6-ditriazinylpyridines. Solv Extr Ion Exch 17(1):23–32Google Scholar
  87. Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998a) Trivalent f-element intra-group separation by solvent extraction with CMPO-complexant system. J Nucl Sci Technol 35:130–136Google Scholar
  88. Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998b) A counter current experiment for the separation of trivalent actinides and lanthanides by the setfics process. Solv Extr Ion Exch 16(6):1357–1367Google Scholar
  89. Konings RJM, Haas D (2002) Fuels and targets for transmutation. C R Phys 3:1013–1022Google Scholar
  90. Konings RJM, Conrad R, Dassel G, Pijlgroms B, Somers J, Toscano E (2000) The EFTTRA-T4 experiment on americium transmutation. J Nucl Mater 282:159–170Google Scholar
  91. Konings RJM, Malmbeck R, Serp, J (2002) Evaluation of thermochemical and electrochemical data for the pyrochemical partitioning process. J Nucl Sci Technol, (Suppl 2), 906–909Google Scholar
  92. Konings RJM, Morss LR, Fuger J (2006) Thermodynamic properties of actinides. In: Edelstein NM, Fuger J, Katz JJ, Morss LR (eds) The chemistry of the actinide and transactinide elements. Springer, Netherlands, pp 2113–2224Google Scholar
  93. Kurata M (1999) Thermodynamic assessment of the Pu-U, Pu-Zr, and Pu-U-Zr systems. Calphad 23:305–337Google Scholar
  94. Kurata M, Inoue T, Serp J, Ougier M, Glatz J-P (2004) Electro-chemical reduction of MOX in LiCl. J Nucl Mater 328:97–102Google Scholar
  95. Kurata M, Sasahara A, Inoue T, Betti M, Babelot JF, Spirlet JC, Koch L (1997) CRIEPI: fabrication of U-Pu-Zr metallic fuel containing minor actinides. In: Proceedings of the Global 1997, Yokohama, Japan, p 1384Google Scholar
  96. Lacquement J, Bourg S, Boussier H, Conocar O, Laplace A, Lecomte M, Boullis B, Duhamet J, Grandjean A, Brossard P, Warin D (2005) Progress of the R&D program on pyrochemistry at CEA. In: Proceedings of the Global 2005, Paper no. 153, Tsukuba, JapanGoogle Scholar
  97. Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140Google Scholar
  98. Latimer TW, Chidester KM, Stratton RW, Lederberger G, Ingold F (1992) Design and fuel fabrication process for the AC-3 mixed carbide irradiation test. Trans Am Nucl Soc 66:182–186Google Scholar
  99. Ledergerber G, Adler HP, Ingold F, Stratton RW (1986) Experience in preparing nuclear fuel by the gelation method. In: ENC’86 Geneva, Transactions, vol 4, p 225Google Scholar
  100. Lian J, Chen J, Wang LM, Ewing RC, Farmer JM, Boatner LA, Helean KB (2003) Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys Rev Condens Matter Mater Phys B 68:134107Google Scholar
  101. Louwrier KP, Richter K, Kramer G, Lebrun M (1976) Preparation of a highly reactive plutonium dioxide powder for plutonium-uranium-carbide and nitride fuel. J Nucl Mater 61:219–220Google Scholar
  102. Lutique S, Konings RJM, Rondinella VV, Somers J, Staicu D, Wiss T (2003) Zirconate pyrochlore as a transmutation target: thermal behaviour and radiation resistance against fission fragment impact. J Nucl Mater 319:59–64Google Scholar
  103. MacClean H, Hayes S (2007) Irradiation of metallic and oxide fuels for actinide transmutation in the ATR. In: Proceedings of the Global 2007, Boise, Idaho, p 1341Google Scholar
  104. Madic C, Hudson MJ (2004) European EUROPART integrated project on actinide partitioning. In: Proceedings of the OECD-NEA: 8th IEM on actinide and fission product partitioning and transmutation, Las Vegas, NevadaGoogle Scholar
  105. Madic C, Hudson MJ, Liljenzin JO, Glatz J-P, Nannicini R, Facchini A, Kolarik Z, Odoj R (2000) New partitioning techniques for minor actinides. European report, EUR 19149Google Scholar
  106. Madic C, Lecomte M, Testard F, Hudson MJ, Liljenzin JO, Sätmark B, Ferrano M, Facchini A, Geist A, Modolo G, Espartero AG, De Mendoza J (2001) “PARTNEW” A European research program (2000–2002) for partitioning of minor actinides from high level liquid wastes. In: Proceedings of the Global 2001, Paris, FranceGoogle Scholar
  107. Madic C, Lecomte M, Baron P, Boullis B (2002) Separation of long-lived radionuclides from high active nuclear waste. C R Phys 3:797–811Google Scholar
  108. Madic C, Testard F, Hudson MJ, Liljenzin JO, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Gonzales-Espartero GA, De Mendoza J (2004) PARTNEW – new solvent extraction processes for minor actinides-final report. CEA-report 6066, FranceGoogle Scholar
  109. Magill J (2003) – an integrated environment for computations on radionuclides and their radiation. Springer, BerlinGoogle Scholar
  110. Magill J, Berthou V, Haas D, Galy J, Schenkel R, Wiese H-W, Heusener G, Tommasi J, Youinou G (2003) Impact limits of partitioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste. Nucl Energy 42(5):263–277Google Scholar
  111. Mailen JC, Smith FJ, Ferris LM (1971) Solubility of PuF3 in molten 2 LiF-BeF2. J Chem Eng Data 16:68–69Google Scholar
  112. Masset P, Bottomley D, Koning RJM, Malmbeck R, Rodrigues A, Serp J, Glatz J-P (2005a) Electrochemistry of uranium in molten LiCl-KCl electric. J Electrochem Soc 152(6):1109–1115Google Scholar
  113. Masset P, Konings RJM, Malmbeck R, Serp J, Glatz J-P (2005b) Thermochemical properties of lanthanides (Ln = La, Nd) and actinides (An = U, Np, Pu, Am) in the molten LiClKCl eutectic. J Nucl Mater 344:173–179Google Scholar
  114. Matzke HJ (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Eff 64:3–33Google Scholar
  115. Matzke HJ (1986) Science of advanced LMFBR fuels. Elsevier, North HollandGoogle Scholar
  116. Maugeri E, Wiss T, Hiernaut J-P, Desai K, Thiriet C, Rondinella VV, Colle J-Y, Konings RJM (2009) Helium solubility and behaviour in uranium dioxide. J Nucl Mater 385:461–466Google Scholar
  117. Mayorshin AA, Skibbe OV, Tsykanov VA, Kisly A (2000) Russian experience in using UPUO2 VIBROPAC fuel pins in fast reactors. In: Proceedings of the 8th international conference on the physics of reactor nuclear power (ICONE), BaltimoreGoogle Scholar
  118. Mayorshin AA, Skibbe OV, Bychkov AV, Kisly A, Shishalov OV, Kormilitsyn MV, Golovchenko YM (2005) RIAR experience in the field of vibropac fuel use in fast reactors. In: Proceedings of the Global 2005 advanced nuclear fuel cycle and systems, Tsukuba, JapanGoogle Scholar
  119. McCarthy GJ (1977) High level waste ceramics: materials considerations, process simulation and product characterization. Nucl Technol 32:92–105Google Scholar
  120. McPheeters C, Pierce RD, Mulcahey TP (1997) Application of the pyrochemical process to recycle of actinides from LWR spent fuel. Prog Nucl Energy 31:175–186Google Scholar
  121. Meyer MK, Hayes SL, Carmack WJ, Tsai H (2009) The EBR-II X501 minor actinide burning experiment. J Nucl Mater 392:176–183Google Scholar
  122. Miguirditchian M, Chareyre L, Hérès X, Hill C, Baron P, Masson M (2007) GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation. In: Proceedings of the Global 2007, Paper no. 81, Boise, IdahoGoogle Scholar
  123. Minato K, Akabori M, Takano M, Arai Y, Nakajima K, Itoh A, Ogawa T (2003) Fabrication of nitride fuels for transmutation of minor actinides. J Nucl Mater 320:18–24Google Scholar
  124. Minato K, Takano M, Otobe H, Nishi T, Akabori M, Arai Y (2009) Thermochemical and thermophysical properties of minor actinide compounds. J Nucl Mater 389:23–28Google Scholar
  125. Modolo G, Odoj R (1999) Synergistic selective extraction of actinides(III) over lanthanides from nitric acid using new aromatic diorganyldithiophosphinic acids and neutral organophosphorus compounds. Solv Extr Ion Exch 17(1):33–53Google Scholar
  126. Morita Y, Glatz J-P, Kubota M, Koch L (1996) Actinide partitioning from HLW in a continuous DIDPA extraction process by means of centrifugal extractors. Solv Extr Ion Exch 14(3):385–400Google Scholar
  127. Morita Y, Yamaguchi I, Fujiwara T, Koizumi H, Tachimori S (2004) A demonstration test of 4-group partitioning process with real high-level liquid waste. In: Proceedings Atalante 2004, Nice, France, 21–25 June, pp 3–37Google Scholar
  128. Mukaiyama T, Takano H, Ogawa T, Takizuka T, Mizumoto M (2002) Partitioning and transmutation studies at JAERI both under OMEGA program and high-intensity proton accelerator project. Prog Nucl Energy 40(3):403–413Google Scholar
  129. Muller I, Weber WJ, Vance ER, Wicks G, Karraker D (2001) Glass ceramics and composites. In: Hoffman DC (ed) Advances in plutonium chemistry 1967–2000, Chap. 10. American Nuclear Society, La Grange, pp 260–297Google Scholar
  130. Muromura T (1982) Carbothermic synthesis of high purity plutonium nitride from plutonium oxide. J Nucl Sci Technol 19:36Google Scholar
  131. Nakajima K, Arai Y, Suzuki Y (1997) Vaporization behavior of neptunium mononitride. J Nucl Mater 247:33–36Google Scholar
  132. Nash KL (1993) Review of the basic chemistry and recent developments in trivalent f-elements separations. Solv Extr Ion Exch 11(4):729–768Google Scholar
  133. NEA (OECD Nuclear Energy Agency) (2008) Nuclear Energy Outlook 2008. OECD Publishing, Issy-les-Moulineaux, FranceGoogle Scholar
  134. Neck V, Altmaier M, Fanghänel Th (2007) Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen. C R Chim 10:959–977Google Scholar
  135. Neeft EAC, Bakker K, Schram RPC, Conrad R, Konings RJM (2003) The EFTTRA-T3 irradiation experiment on inert matrix fuels. J Nucl Mater 320:106–116Google Scholar
  136. Nigond L, Musikas C, Cuillerdier C (1994) Extraction by N,N,N,N-tetraalkyl-2 alkyl propane-1,3 diamides. I. H2O, HNO3 and HClO4. Solv Extr Ion Exch 12(2):261–296Google Scholar
  137. Noe M, Fuger J (1974) Self-radiation effects on the lattice parameter of 238PuO2. Inorg Nucl Chem Lett 10:7–19Google Scholar
  138. Ogawa T, Ohmichi T, Maeda A, Arai Y, Suzuki Y (1995) Vaporization behaviour of (Pu,Am)N. J Alloys Compd 224:55–59Google Scholar
  139. Ohta H, Inoue T, Sakamura Y, Kinoshita K. (2005), Pyroprocessing of light water reactor spent fuels based on an electrochemical reduction technology. Nuclear Technology 150(2):153–161Google Scholar
  140. Ohta H, Yokoo T, Inoue T, Ougier M, Glatz J-P, Fontaine B, Brunon E, Poncet L, Sudreau F, Warin D (2007a) Irradiation test of fast reactor metal fuel containing minor actinides in Phénix reactor. In: Proceedings of the Global 2007, Paper 043, Boise, IdahoGoogle Scholar
  141. Ohta H, Yokoo T, Ogata T, Inoue T, Ougier M, Glatz JP, Fontaine B, Breton L (2007b) Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at. % burnup. In: Proceedings of the Global 2007, Boise, Idaho, pp 1346–1352Google Scholar
  142. Ohta H, Ogata T, Papaioannou D, Kurata M, Koyama T, Rondinella VV and Glatz JP (2009) Development of minor actinide-containing metal fuels. Proceedings of the International Conference Fast Reactors and Related Fuel Cycles: Challenges and Opportunities FR09, 7-11 Dec. 2009, Kyoto, Japan, paper 1222Google Scholar
  143. Okamoto Y, Maeda A, Suzuki Y (1993) Self-irradiation damage in PuN. J Nucl Mater 206:94–96Google Scholar
  144. Otobe H, Akabori M, Minato K (2008) Oxygen potential measurement of americium oxide by electromotive force method. J Am Ceram Soc 91(6):1981–1985Google Scholar
  145. Picard E, Noirot J, Moss RL, Plitz H, Richter K, Rouault J (2000) First in-pile experimental results of high-plutonium-content oxide fuel for plutonium burning in fast reactors. J Nucl Technol 129:1–12Google Scholar
  146. Prunier C, Bardelle P, Pages JP, Richter K, Stratton RW, Ledergerber G (1991) European collaboration on mixed nitride fuel. In: Proceedings of the international conference of fast reactors and related fuels, Kyoto, Japan, p 15.9-1Google Scholar
  147. Prunier C, Warin D, Stratton R, Ledergerber G (1992) Flow sheet, fabrication and properties comparison of nitride fuel obtained by powder metallurgy and gelation processes. Trans Am Nucl Soc 66:187Google Scholar
  148. Prunier C, Warin D, Bauer M, Ledergerber G, Ingold F, Stratton RW, Adler HP (1993) Application of gel co conversion for transuranium elements (Pu, Np, Am) fuel and target preparation. In: Proceedings of the Global 1993, Washington, p 1273Google Scholar
  149. Prunier C, Boussard F, Koch L, Coquerelle M (1997) Some specific aspects of homogeneous americium- and neptunium-based fuels transmutation through the outcomes of the superfact experiment in Phénix fast reactor. J Nucl Technol 119:141–148Google Scholar
  150. Quiñones J, Iglesias E, Rodriguez N, Nieto J (2008) Influence of the specific surface area on spent nuclear fuel dissolution rates. In: MRS symposium proceedings 1124, Paper no. 1124-Q02-02, Boston; Grambow B (2006) Elements 2:357–364Google Scholar
  151. Richter K (1987) Direct pressing: a new method of fabricating MX fuels. In: Vincenzini P (ed) High tech ceramics. Elsevier, AmsterdamGoogle Scholar
  152. Richter K, Coquerelle M, Gabolde J, Werner P (1974) Preparation of high performance non oxide fuels: first results of fast flux experiments DN1. In: IAEA, fuel and fuel elements for fast reactors, vol 1, Vienna, p 71Google Scholar
  153. Richter K, Bartscher W, Benedict U, Gueugnon JF, Kutter H, Sari C, Schmidt HE (1978) Report I on swelling in MX type fuels 1973–76. Report EUR 6154 ENGoogle Scholar
  154. Richter K, Kramer G, Gueugnon JF (1979) Plutonium depletion by vapour phase transport in carbothermic reduction processes. Trans Am Nucl Soc 31:213Google Scholar
  155. Richter K, Gueugnon J, Kramer G, Sari C, Werner P (1985) Direct pressing: a new method of fabricating MX fuel pellets. J Nucl Technol 70(3):401–407Google Scholar
  156. Richter K, Fernandez A, Somers J (1997) Infiltration of highly radioactive materials: a novel approach to the fabrication of targets for the transmutation and incineration of actinides. J Nucl Mater 249:121–127Google Scholar
  157. Ringwood E, Kesson SE, Ware NG, Hibberson W, Major A (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278:219–223Google Scholar
  158. Rondinella VV, Matzke HJ, Cobos J, Wiss T (2000) Leaching behaviour of UO2 containing a-emitting actinides. Radiochim Acta 88:527–531Google Scholar
  159. Rondinella VV, Cobos J, Wiss T, Hiernaut J-P (2003) Studies on spent fuel alterations during storage and radiolysis effects on corrosion behaviour using alpha-doped UO2. In: Proceedings of the ICEM 2003, Paper 4593, OxfordGoogle Scholar
  160. Rondinella VV, Cobos J, Wiss T (2004) Leaching behaviour of low activity alpha-doped UO2. In: MRS symposium proceedings, San Francisco, April 13–16, vol 824, pp 167–173Google Scholar
  161. Rondinella VV, Cobos J, Wiss T, Staicu D (2005) Studies on spent fuel alterations during storage and effects on corrosion behaviour. In: Proceedings of the ICEM 2005, Paper 1275, GlasgowGoogle Scholar
  162. Rondinella VV, Wiss T, Hiernaut J-P (2007) Dose rate effects on the accumulation of radiation damage. In: Proceedings of the ICEM 2007, Paper no. 12755-8, Bruges, BelgiumGoogle Scholar
  163. Sakamura Y, Kurata M, Inoue T (2006) Electrochemical reduction of UO2 in molten Ca Cl2 or LiCl. J Electrochem Soc 153:D31–D39Google Scholar
  164. Sakamura Y, Omori T, Inoue T (2008) Application of electrochemical reduction to produce metal fuel material from actinide oxides. Nucl Technol 162:169–178Google Scholar
  165. Salvatores M (1993) The SPIN program at CEA. In: Proceedings of the Global 1993, Seattle, p 548Google Scholar
  166. Schmidt HE, Sari C, Richter K, Gerontopoulos P (1986) The thermal conductivity of ovides of uranium, neptunium and americium at elevated temperatures. J Less-Common Met 121:621–630Google Scholar
  167. Serp J, Konings RJM, Malmbeck R, Rebizant J, Scheppler C, Glatz J-P (2004) Electrochemical behaviour of plutonium ion in LiCl - KCl eutectic melts. J Electroanal Chem 561:143–148Google Scholar
  168. Serrano-Purroy D, Baron P, Christiansen B, Malmbeck R, Sorel C, Glatz J-P (2005) Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim Acta 93:351–355Google Scholar
  169. Sickafus E, Minervini L, Grimes RW, Valdez JA, Ishimura M, Li F, McClellan KJ, Hartmann T (2000) Radiation tolerance of complex oxides. Science 289:748–751Google Scholar
  170. Smith PK, Peterson DE (1970) High-temperature evaporation and thermodynamic properties of Cm2O3. J Chem Phys 52:4963–4972Google Scholar
  171. Somers J, Fernandez A (2005) Fabrication routes for yttria-stabilized zirconia suitable for the production for minor actinide transmutation targets. J Am Ceram Soc 88:827–832Google Scholar
  172. Strachan DM, Scheele RD, Kozelisky AE, Sell RL (2003) Effects of self irradiation from 238Pu on candidate ceramics for plutonium immobilization. PNNL-14232, Pacific Northwest National Laboratory, Richland, WAGoogle Scholar
  173. Suzuki Y, Arai Y, Okamoto Y, Ohmichi T (1994) Preparation of neptunium mononitride by carbothermic reduction. J Nucl Sci Technol 31:677–680Google Scholar
  174. Takanashi M, Homma S, Koga J, Matsumoto S (1998) Neptunium concentration profiles in the Purex process. J Alloys Compd 689:271–273Google Scholar
  175. Takano M, Itoh A, Akabori M, Ogawa T, Kuikkawa S, Ogamoto H (1999) Synthesis of americium mononitride by carbothermic reduction. In: Proceedings of the Global 1999, Jackson Hole, WyomingGoogle Scholar
  176. Takano M, Itoh A, Akabori M, Ogawa T, Numata M, Okamoto H (2001) Carbothermic synthesis of (Cm,Pu)N. J Nucl Mater 294:24–27Google Scholar
  177. Takano M, Itoh A, Akabori M, Minato K, Numata M (2003) Study of the stability of AmN and (ZrAm)N. In: Proceedings of the Global 2003, New Orleans, p 2285Google Scholar
  178. Tanaka K, Maeda K, Katsuyama K, Inoue M, Iwai T, Arai Y (2004) Fission gas release and swelling in uraniumplutonium mixed nitride fuels. J Nucl Mater 327:77–87Google Scholar
  179. Tanaka K, Osaka M, Sato I, Miwa S, Koyama S, Ishi Y, Hirosawa T, Obayashi H, Yoshimochi H (2007) Research and development of americium containing mixed oxide fuel for fast reactors. In: Proceedings of the Global 2007, Boise, Idaho p 897Google Scholar
  180. Tanaka K, Miwa S, Sato I, Hirosawa T, Obayashi H, Koyama S, Yoshimochi H, Tanaka K (2009) Microstructure and elemental distribution of americium-containing uranium plutonium mixed oxide fuel under a short-term irradiation test in a fast reactor. J Nucl Mater 385:407–412Google Scholar
  181. Vance E (2007) Development of ceramic waste forms for high-level nuclear waste over the last 30 years. In: Dunn D, Poinssot C, Begg B (eds) MRS symposium proceedings 985, pp 135–140, Boston, USA, Nov. 27-Dec. 1Google Scholar
  182. Vollath D (1977) Vorgnge bei der karbothermischen synthese von uran-plutoniumkarbid. J Nucl Mater 64:27–36Google Scholar
  183. Wald JW, Weber WJ (1984) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaTrTi2O7. In: Wicks GG, Ross WA (eds) Advances in ceramics, vol 8. American Ceramic Society, Columbus, Ohio, pp 71–75Google Scholar
  184. Walker CT, Nicolaou G (1995) Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the superfact fuels. J Nucl Mater 218:129–138Google Scholar
  185. Warin D, Conrad R, Haas D, Heusener G, Martin P, Konings RJM, Schram RPC, Vambenepe G (2001) 10 YEARS EFTTRA: 1992–2001. In: Proceedings of the Global 2001, Paris, FranceGoogle Scholar
  186. Weber WJ (1981) Ingrowth of lattice defects in alpha irradiated UO2 single crystals. J Nucl Mater 98:206–215Google Scholar
  187. Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Matzke HJ, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484Google Scholar
  188. Weber WJ, Navrotsky A, Stefanovsky S, Vance ER, Vernaz E (2009) Materials science of high-level nuclear waste immobilization. MRS Bull 34:46–53Google Scholar
  189. Wiss T, Konings RJM, Walker CT, Thiele H (2003) Microstructure characterisation of irradiated Am-containing MgAl2O4 (EFTTRA-T4). J Nucl Mater 320:85–95Google Scholar
  190. Wiss T, Deschanels X, Hiernaut J-P, Roudil D, Peuget S, Rondinella VV (2007) Helium release from plutonium and curium-doped zirconolite. J Nucl Mater 362: 431–437Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas Fanghänel
    • 1
  • Jean-Paul Glatz
    • 1
  • Rudy J. M. Konings
    • 1
  • Vincenzo V. Rondinella
    • 1
  • Joe Somers
    • 1
  1. 1.European Commission, Joint Research CentreInstitute for Transuranium ElementsKarlsruheGermany

Personalised recommendations