Skip to main content

Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety

  • Reference work entry
Handbook of Nuclear Engineering

Motivations for Fast Neutron Systems

Basic Principles and Consequences

In any nuclear reactor, there is both fissile material destroyed (FD)

$${ }^{233}{\mathrm{U\ or}\ }^{235}{\mathrm{U\ or}\ }^{239}\mathrm{Pu}$$

and produced by conversion of the fertile material (FP):

$${ }^{238}\mathrm{U} {\Rightarrow }^{239}\mathrm{U} {\Rightarrow }^{239}\mathrm{Np} {\Rightarrow }^{239}{\mathrm{Pu\ or}\ }^{232}\mathrm{Th} {\Rightarrow }^{233}\mathrm{Th} {\Rightarrow }^{233}\mathrm{Pa} {\Rightarrow }^{233}\mathrm{U}$$

The degree of conversion that occurs in a reactor is denoted by the general term of conversion ratio, CR, which is defined as CR = FP/FD. If this conversion ratio is greater than 1, it is called breeding ratio, BR.

Conditions for Breeding

A nuclear reactor can be a breeder in broad neutron energy spectrum, but adequate breeding ratios can be achieved only by selecting the appropriate fertile and fissile isotopes for that spectrum.

Starting from the fission process, if

    ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A review of fast reactor program in Japan. In: Annual Meeting of the technical working group on fast reactors (TWG-FR), IAEA Vienna, 26–29 May 2008

    Google Scholar 

  • ABAQUS Version 6.7 Simulia Dassault Systems, USA

    Google Scholar 

  • Absorber materials, control rods and designs of shutdown systems for advanced LMFR. (1996). IAEA-TECDOC-884

    Google Scholar 

  • AFNOR 1996, A3-406, RCC-MR, RB 3261.123, 2007 issue. AFCEN, Paris

    Google Scholar 

  • AGT 1 sub-group 1 (AEA Windscale and Harwell, CEA Cadarache, KfK Karlsruhe, Interatom, Belgonucleaire) (ed) (1990) Catalogue Europeen des propriétés de l’oxyde mixte (U,Pu)O2 – fast reactor data manual 1. CEA

    Google Scholar 

  • Anderson EP (ed) (1978) Fermi I: new age for nuclear power. ANS publication

    Google Scholar 

  • Anzieu P, Serpantie J-P, Verwaerde D, Dufour Ph, Martin Ph (2007) A program on innovative SFR in France. In: Proceedings of ICAPP2007, paper 7398, Nice Acropolis, France, 13–18 May 2007

    Google Scholar 

  • Arai Y, Suzuki Y, Iwai T, Ohmichi T (1992) Dependence of the thermal conductivity of (U,Pu)N on porosity and plutonium content. J Nucl Mater 195:37

    Google Scholar 

  • Arnol’dov MN et al (2004) The permeability and solubility of hydrogen in a lead-bismuth melt of eutectic composition. High Temp 42(5):715–719

    Google Scholar 

  • Arrêté du 15 mai 2006 relatif aux conditions de délimitation et de signalisation des zones surveillées et contrôlées et des zones spécialement réglementées ou interdites compte tenu de l’exposition aux rayonnements ionisants, ainsi qu’aux règles d’hygiène, de sécurité et d’entretien qui y sont imposes

    Google Scholar 

  • ASME Sec III Div 1, Subsection NB-3133, Components under External Pressure, 2007

    Google Scholar 

  • Astegiano J-C (1990) Assessment of thermal-hydraulic characteristics of primary circuit. Nucl Sci Eng 106

    Google Scholar 

  • Astegiano JC et al (1981) EFR primary system thermal-hydraulics – status on R&D and design studies. In: Proceedings of the international conference on fast reactor and related fuel cycles, Kyoto, Japan

    Google Scholar 

  • Athiannan K (2002) Buckling of imperfect cylindrical shell. PhD thesis, IIT Madras

    Google Scholar 

  • Auger T et al (2008) Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: a fracture mechanics assessment. J Nucl Mater 377(1):253–260

    MathSciNet  Google Scholar 

  • Axisa F, Antunes J Modelling of mechanical systems. Fluid Structure Interaction Hermès

    Google Scholar 

  • Bagley H, Harbourne B, Lennov T, Linekar G, Mignanelli M, Plitz H, Pluchery M, Rouault J (1989) Synthesis report on the understanding of failed LMFBR fuel element performance. CEA/UKAEA/KFK/PSB. Report IV 307 KL IV

    Google Scholar 

  • Balbaud-Célérier F et al (2001) Investigation of models to predict the corrosion of steels in flowing liquid lead alloys. J Nucl Mater 289(3):227–242

    Google Scholar 

  • Baldasari JP et al (1984) Open azimuthal thermosyphon in annular space – comparisons of experimental and numerical results. In: Liquid metal engineering and technology. BNES, London, pp 463–467

    Google Scholar 

  • Basmajian JA et al (1972) Nuclear Technology 16:238

    Google Scholar 

  • Benamati G et al (2002a) Mechanical and corrosion behaviour of EUROFER 97 steel exposed to Pb-17Li. J Nucl Mater 307–311, Part 2, 1391–1395

    Google Scholar 

  • Benamati G et al (2002b) Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth. J Nucl Mater 301(1):23–27

    Google Scholar 

  • Blanks DM (1985) Fuel handling options for commercial fast breeder reactors. In: International conference on engineering developments in reactor refueling, England, 13–15 May 1985

    Google Scholar 

  • Bernard H (1989) Advanced fuel fabrication. J Nucl Mater 166:105

    Google Scholar 

  • Bertrand F, Devictor N (2006) Combination of deterministic and probabilistic safety analysis in support to the design of new nuclear reactor. In: Proceedings of the IAEA technical meeting on effective integration of deterministic and probabilistic safety analysis in plant safety management, Barcelona, Spain, 4–8 September 2006

    Google Scholar 

  • Bettes C, Judd AM, Lewis WWJ (1994) Avoiding thermal striping damage: experimentally based design procedures for high cycle thermal fatigue. IWGFR/90. In: Specialists meeting on correlation between material properties and thermohydraulics conditions in LMFBRs, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Betts C, Bourman C, Sheriff N (1983) Thermal striping in liquid metal cooled fast breeder reactors. In: Second international topical manufacturing on nuclear reactor thermal hydraulics, NURETH-2, Santa Barbara, California, pp 1292–1301

    Google Scholar 

  • Billone MC, Jankus VZ, Kramer JM, Yang CI (1977) Progress in modelling carbide and nitride fuels performance in advanced LMFBRs. In: Advanced LMFBR fuels – topical meeting proceedings, 10–13 October 1977, Tucson, Arizona, USA

    Google Scholar 

  • Billone et al (1986) Status of fuel element modeling codes for metallic fuels (pp. 5.77–5.91). In: Reliable fuels for liquid metal reactors, TUCSON conference, Arizona, September 1986, p. 5.77

    Google Scholar 

  • Blanchet Y, Obry P, Louvet J (1981) Treatment of fluid–structure interaction with the SIRIUS computer code. In: SMIRT-6, Paris, B8/8

    Google Scholar 

  • Blay N, Touboul F, Blanchard MT, Lebreton F (1997a) Piping seismic design criteria: experimental evaluation. In: SMIRT 14, Lyon, K15/4, pp 95–102

    Google Scholar 

  • Blay N, Touboul F, Blanchard MT, Lebreton F, Cara S (1997b) Piping seismic design criteria: test simulations. In: SMIRT 14, Lyon, K15/5, pp 103–110

    Google Scholar 

  • BN-350 reactor. (1969). Fuel Processing Technology 12:323–334

    Google Scholar 

  • Bogolovskaia GP et al (2002) Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors. IAEA-TECDOC-1289, Vienna

    Google Scholar 

  • Borstedt HU, Champeix L (1989) Corrosion in fast breeder reactors. EFC publication N°1. The Institute of Metals, Brussels, Belgium, ISBN 0-901462-73-X

    Google Scholar 

  • Bose MRSC, Thomas G, Palaninathan R, Damodaran SP, Chellapandi P (2001) Buckling investigations on a nuclear reactor inner vessel model. In: Experimental mechanics. SAGE publications, vol 41, no 2, pp 144–150

    Google Scholar 

  • Bour C, Sperandio M, Louvet J, Rieg C LMFBR’s core disruptive accident mechanical study of the reactor bloc of SPX-1. In: Tenth SMIRT, Anaheim, USA

    Google Scholar 

  • Bourganel S Etudes de radioprotection dédiées au réacteur RNR-Na pour la configuration de cœur Valentin V2B. Rapport DM2S/SERMA/LPEC/RT/08-4602/A

    Google Scholar 

  • Brehm WF et al (1987) Corrosion and fission products in primary systems of liquid metal cooled reactors in the USA. In: Proceedings of fission and corrosion product behaviour in primary circuit of LMFBRs, IWGFR/64, RFA, Karlsruhe, 5–8 May 1987; Feuerstein H, Thorley AW (eds) (1987) KfK 4279, pp 75–92

    Google Scholar 

  • Briceno DG et al (2001) Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient. J Nucl Mater 296:265–272

    Google Scholar 

  • Brissonneau L et al (2008) Evaluation of alternative fluids for SFR intermediate loops. In: Proceedings of ICAPP’09, Tokyo

    Google Scholar 

  • Brissonneau L, Simon N, Saez M, Balbaud F, Rochwerger D, Baqué F, Rodriguez G, Gerber A, Menou S, Prèle G, Capitaine A (2009) The potential use of an alternative fluid for SFR intermediate loops: selection and first design. In: Proceedings of FR’09, Kyoto, Dec 2009

    Google Scholar 

  • Breuil E, Sperandio M, Waeckel N, Djouini C, Jullien JF (1991) How to improve the post-buckling stiffness of the LMFBR roof slab’s bottom plate. In: SMIRT 11 transactions, vol E, August 1991, Tokyo, Japan

    Google Scholar 

  • Brochard J, Combescure A, Tomassian R, Locatelli Th (1991) Thermal buckling influence on reduction of critical buckling loads. In: SMIRT 11 transactions, vol E, August 1991, Tokyo, Japan

    Google Scholar 

  • Buiron L (2009) (Courriel de) Données SFR 3600 pour le dimensionnement des protections. (DER/SPRC) du 11 mars 2009

    Google Scholar 

  • Buland P (1995) Symphony experimental mockup SMIRT

    Google Scholar 

  • Bunch WL, O’Dell LD (1969) Fission product inventory and decay heat associated with FTR fuel. BNWL-961

    Google Scholar 

  • Cabrillat et al (1997) Benchmark on a thermal ratchetting test. Comparison of different constitutive models. Transactions of the 14th conference on structural mechanics (SMIRT 14th), LW/4, Lyon, France

    Google Scholar 

  • Cahalan JC, Wei TYC (1990) Modeling development for the SAS4A and SASYS computer codes. In: Proceedings of international fast reactor safety meeting, Snowbird, Utah

    Google Scholar 

  • Cahalan JE et al (1977) A preliminary users guide to version 1.0 of the SAS 3D accident analysis code. SR-239831. ANL

    Google Scholar 

  • Cameron IG et al (1978) The computer code SEURENUK-2 for fast reactor containment studies. Comp Phys Comm 13:197

    Google Scholar 

  • Carter JC et al (1970) SAS1A – a computer code for the analysis of fast reactor power and flow transients. ANL-7607

    Google Scholar 

  • CEA internal reports

    Google Scholar 

  • CEA (2003) http://www-cast3m.cea.fr/cast3m/. CAST3M – user manual

  • Chang YM, Gvildys J, REXCO-HEP (1975) A two-dimensional computer code for calculating the primary system response in fast reactors. ANL-75-19. Argonne National Laboratory

    Google Scholar 

  • Chang YI, Konomura M, Lo Pinto P (2007) A case of small modular fast reactor. J Nucl Sci Technol 44(3):264–269

    Google Scholar 

  • Chapuliot et al (2005) Hydro-mechanical analysis of thermal fatigue in a mixing tee. Nucl Eng Des 235:575–596

    Google Scholar 

  • Chellapandi P (2000a) FUSTIN: a code for structural analysis of primary containment under CDA: mathematical modeling. PFBR/31050/DN/1016

    Google Scholar 

  • Chellapandi P, Chetal SC, Bhoje SB (2000b) Effect of reactor internals on structural integrity of PFBR main vessel under CDA. ASME, PVP 403:161–172

    Google Scholar 

  • Chellapandi P, Chetal SC, Raj B (Aug 2008) Investigation on buckling of FBR vessels under seismic loading with fluid structure interactions. J Nucl Eng Des 238:3208–3217

    Google Scholar 

  • Chellapandi P, Chetal SC, Raj B Investigation of structural mechanics failure modes in FBR. In: Raj B et al (eds) Pressure vessels and piping: codes, standards, design and analysis. Narosa Publishing House, New Delhi (in press)

    Google Scholar 

  • Chellapandi P, Suresh Kumar R, Chetal SC, Raj B (2007) Numerical and experimental simulation of large elastoplastic deformations of FBR main vessel under core disruptive accident loadings. In: IMPLAST 2007, symposium on plasticity and impact mechanics, Ruhr University, Germany, 21–24 August 2007

    Google Scholar 

  • Chellapandi P, Velusamy K, Kannan SE, Om Pal Singh, Chetal SC, Bhoje SB (2002) Core disruptive accident analysis in prototype fast breeder reactor. In: First national conference on nuclear reactor safety, 25–27 November 2002, Mumbai, India

    Google Scholar 

  • Ciampichetti A et al (2008) LBE-water interaction in sub-critical reactors: first experimental and modelling results. J Nucl Mater 376(3):418–423

    Google Scholar 

  • Clement G, Drubay B (1991) Influence of cyclic loading on buckling progressive buckling. In: SMIRT 11 transactions, vol E, August 1991, Tokyo, Japan

    Google Scholar 

  • Code de calcul CASTEM www.cast3M.fr

  • Combescure A (1999) Proposition of a design for creep buckling. In: LMT-Cachan/CEA-DMT-SEMT, France, transactions of the 15th conference on SMIRT-15, Seoul, Korea, 15–20 August 15 1999

    Google Scholar 

  • Combescure A, Brochard J (1991) Recent advances on thermal buckling new results obtained at CEA. In: SMIRT 11 transactions, vol E, August 1991, Tokyo, Japan

    Google Scholar 

  • Conceptual design of advanced fast reactors. In: Proceedings of a technical committee meeting, Kalpakkam, 3–6 October 1995. IAEA-Tecdoc-907

    Google Scholar 

  • Core safety improvements in sodium fast reactors. In: INPRO meeting, CEA, Cadarache, 7 February 2007

    Google Scholar 

  • Courouau JL (2004) Electrochemical oxygen sensors for on-line monitoring in lead-bismuth alloys: status of development. J Nucl Mater 335(2):254–259

    Google Scholar 

  • Courouau JL (2007) Chemistry control and monitoring systems. In: Fazio C (ed) Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies, OECD, pp 129–177

    Google Scholar 

  • Cowler MS, Hancock SL (1979) Dynamic fluid–structure analysis of shells using the PISCES-2DELK computer code. In: SMIRT-5, Berlin, B1/6

    Google Scholar 

  • Crawford et al (2007) Fuels for sodium cooled fast reactors – US perspective. Journal of Nuclear Materials 371:202–231

    Google Scholar 

  • Crespo LS et al (2001) Short-term static corrosion tests in lead-bismuth. J Nucl Mater 296:273–281

    Google Scholar 

  • Defense in depth in nuclear safety – INSAG-10 (1996). A report of international. Nuclear Safety Advisory Group, IAEA, Vienna

    Google Scholar 

  • Delangre E (2001) Fluides et solides Les éditions de polytechnique

    Google Scholar 

  • Design of the Clinch river breeder reactor plant steam generator. (1976). Nucl Tech 28:305–314

    Google Scholar 

  • Donea J, Fasoli-Stella P, Giuliani S, Halleux JP, Jones AV (1980) The computer code EURDYN-1M for transient dynamic fluid–structure interaction. EUR 6751. Commission of the European Communities

    Google Scholar 

  • Dufour Ph (2007) Post accident heat removal analysis for SPX and EFR. In: CEA-IGCAR technical seminar on liquid metal fast reactor safety aspects related to severe accidents, Kalpakkam, India, February 2007

    Google Scholar 

  • Dunn FE et al (1974) The SAS2A LMFBR accident analysis computer code. ANL-8138

    Google Scholar 

  • Eguchi Y, Yamamoto K, Funada T et al (1994) Gas entrainment in the IHX vessel of top-entry loop type LMFBR. Nuclear Engineering and Design 146:373–381

    Google Scholar 

  • Eptein M, Grolmes MA, Henry RE, Fauske KK (1976) Transient freezing of a flowing ceramic fuel in a steel channel. Nucl Sci Eng 61:310

    Google Scholar 

  • Evaluated nuclear data file (2008). http://www-nds.iaea.org/exfor/endf.htm#1

  • Experience with liquid metal fast breeder reactor steam generators – U.S design. (1981). Nuclear Technology 55:60–87

    Google Scholar 

  • Farrar B (1990) Use of the PHOENCIS CFD code to simulate the 3D thermal hydraulic behavior of a pool type LMFBR hot plenum. In: IMechE seminar on thermohydraulics of nuclear reactors, London, pp 95–105

    Google Scholar 

  • Farvacque M et al (2003) CATHARE 2 v2.5: a fully validated CATHARE version for various applications. In: Proceedings of NURETH-10, Séoul, Korea, 2003

    Google Scholar 

  • Fazio C et al (2001) Compatibility tests on steels in molten lead and lead-bismuth. J Nucl Mater 296(1–3):243–248

    Google Scholar 

  • Fazio C (2007) handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies, vol 1. OECD, Paris

    Google Scholar 

  • Fink JK (2000) Zircaloy thermal conductivity. Argonne National Laboratory

    Google Scholar 

  • Fleitman AH et al (1971) Mercury as a nuclear coolant. Nucl Eng Design 16:266–278

    Google Scholar 

  • Foletti C et al (2008) ENEA experience in oxygen measurements. J Nucl Mater 376(3):386–391

    Google Scholar 

  • Fontaine B (1997) Seismic analysis of LMFBR reactor cores. SYMPHONY mockup SMIRT

    Google Scholar 

  • François G et al (2008) Sodium fast reactor concepts. In: Proceedings of ICAPP’08, Anaheim

    Google Scholar 

  • Francois G, Azarian G (1989) SUPER PHENIX reactor block thermalhydraulic behaviour comparison between calculations and experimental results. In: Tenth international conference on structural mechanics in reactor technology, Lyon, France, pp 37–42

    Google Scholar 

  • French steam generator experience – Phenix and beyond. (1976). Nuclear Technology 28:482–488

    Google Scholar 

  • Fritz J (1972) The effect of liquids on the dynamic motions of immersed solids. J Eng Ind

    Google Scholar 

  • Funada T, Yamamoto K, Eguchi Y et al (1991) Gas entrainment in the IHX vessel of top-entry loop type LMFBR. In: Proceedings of NURETH-5, Salt Lake City, pp 1399–1406

    Google Scholar 

  • Gabor JD et al (1974) Studies and experiments on heat removal from fuel debris in sodium. In: Proceedings of fast reactor safety conference, FONF-740401, p 823

    Google Scholar 

  • GCFS (2007) Fondamentaux de Sûreté Nucléaire pour la conception des Réacteurs de Génération IV. Safety Approach for the design and the assessment of future nuclear systems. FRENCH ADVISORY GROUP ON SAFETY, ICAPP

    Google Scholar 

  • Gelineau O, Sperandio M (1994) Thermal fluctuation problems encountered in LMFBRs. IAEA-IWGFR/90. In: Specialistic meeting on correlation between material properties and thermohydraulics conditions in LMFBRs, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Gelineau et al (1999) Predictive methods applied to thermal striping problems and recommendations, SMIRT 15. Paper F 0/6

    Google Scholar 

  • GenIV GIF. Basis for the safety approach for design & assessment of generation IV nuclear systems. Report GIF/RSWG/2007/002/Rev.1

    Google Scholar 

  • Gessi A et al (2005) Parametric experiments on Eurofer steel corrosion by Pb-17Li; LB-A-R-022. Final report on EU Task TW2-TTBC003.D3, ENEA Brasimone

    Google Scholar 

  • Gessi A et al (2008) Corrosion experiments of steels in flowing Pb at 500 ̈C and in flowing LBE at 450°C. J Nucl Mater 376(3):269–273

    Google Scholar 

  • Gibert RJ (1988) Vibration des structures. Eyrolles

    Google Scholar 

  • Gluekler EL, Huang TC, Jospeh D (1979) In-vessel retention of core debris in LMFBRs. In: Proceedings of international meeting in fast reactor safety technology, Seattle

    Google Scholar 

  • Gluekler EL et al (1982) Analysis of in-vessel core debris retention in large LMFBRS. In: Proceedings of the LMFBR safety topical meeting, Lyon

    Google Scholar 

  • Golden GH, Tokar JV (August 1967) Thermophysical properties of sodium. ANL-7323. Argonne National Laboratory, Illinois

    Google Scholar 

  • Goldstein S, Joly J, Vidard M (1979) Thermal analysis of the penetrations of a LMFBR. In: Fifth international conference on structural mechanics in reactor technology

    Google Scholar 

  • Gorse-Pomonti D et al (2007) Liquid metals for nuclear applications. J Non-Crystalline Solids 353:32–40, 3600–3614

    Google Scholar 

  • Gosset G, Simeone D, Quirion D (2000) Endommagement du carbure de bore sous irradiation neutronique : évaluation en diffraction X. J Phys Fr IV(Pr), 10–55

    Google Scholar 

  • Gosset J, Gicquel R, Lecomte M, Queiros-Conde D (2005) Optimal design of the structure and settings of nuclear HTR thermodynamic cycles. Int J Thermal Sci 44(12):1169–1179

    Google Scholar 

  • Glasbrenner H et al (2001) Corrosion investigations of steels in flowing lead at 400°C and 550°C. J Nucl Mater 296(1–3):237–242

    Google Scholar 

  • Graham J (1971) Fast reactor safety. Academic, New York

    Google Scholar 

  • Graveleau JL, Louvet P (1979) Calculation of fluid–structure interaction for reactor safety with the CASSIOPEE code. In: Proceedings of the fifth international conference on structural mechanics in reactor technology, Paper B1/7, Berlin, Germany

    Google Scholar 

  • Gregory JN et al (1956) The static corrosion of nickel and other materials in molten caustic soda, AERE C/M 272, Harwell, Berks

    Google Scholar 

  • Guérin Y, Rouault J (1986) In-pile behaviour of carbide fuel elements designed for low doubling time. In: Proceedings of the international conference on reliable fuels for LMR, 7–11 September 1986, Tucson, Arizona, USA

    Google Scholar 

  • Guidez J, Gognet G (1990) Simulation by water-test of the argon entrainment in the sodium breeder. In: Proceedings of second international symposium on gas transfer at water surfaces, Minneapolis

    Google Scholar 

  • Harbur et al (1970) Studies on U–Pu–Zr alloy system for fast breeder applications. Report TID-4500

    Google Scholar 

  • Harish R, Sathiyasheela T, Stinivasan GS, Om Pal Singh (1999) KALDIS: a computer code system for core disruptive accident analysis of fast reactors. IGC-208

    Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids 8:2182–2188

    MATH  Google Scholar 

  • Haubensack D, Thevenot C, Dumaz P (2004) The COPERNIC/CYCLOP computer tool: pre-conceptual design of generation 4 nuclear systems. In: 2nd international topical meeting high temperature reactor technology, HTR 2004, Beijing, China, 22–24 September 2004

    Google Scholar 

  • Heuvel HJ, Höller P, Donner P (1985) Absorber material cladding chemical interaction in vented FBR absorber pins. J Nucl Mat 130:517

    Google Scholar 

  • Hiroshi Akiyama. ‘Seismic Resistance of FBR Components Influenced by Buckling, Kajma Institute publishing, Japan, 1997

    Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39: 201–225

    MATH  Google Scholar 

  • Hu LW, Kazimi MS (2006) LES benchmark study of high cycle temperature fluctuations caused by thermal striping in a mixing tee. J Heat Fluid Flow

    Google Scholar 

  • IAEA annual reports: status of fast reactor programmes

    Google Scholar 

  • IAEA (1996) Absorber materials, control rods and designs of shutdown systems for advanced liquid metal fast reactors. IAEA-TECDOC-884

    Google Scholar 

  • IAEA (1996) Defense-in-depth in nuclear safety. IAEA safety series no. 75. INSAG-10

    Google Scholar 

  • IAEA (April 1999) Status of liquid metal cooled fast reactor technology. IAEA-TECDOC-1083

    Google Scholar 

  • IAEA (2000) Safety of nuclear power plants: design. IAEA safety standards series NS-R-1

    Google Scholar 

  • IAEA (2005) Assessment of defence in depth for nuclear power plants. IAEA safety report series no. 46

    Google Scholar 

  • IAEA (2007) Proposal for a technology – neutral safety approach for new reactor designs. IAEA-TECDOC-1570

    Google Scholar 

  • IAEA INSAG10 Defence in depth in nuclear safety

    Google Scholar 

  • Igari et al (1993) Proposal of a new estimation method for the thermal ratchetting of a cylinder subjected to a moving temperature distribution. Nucl Eng Des 139:261–267

    Google Scholar 

  • Igari et al (2002) Inelastic analysis of new thermal ratchetting due to a moving temperature front. Int J Plas 18:1191–1217

    Google Scholar 

  • INEEL (2001) RELAP5-3D{ ©} code manual, vol I: code structure, system models, and solution methods. Report INEEL-EXT-98-00834. Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho

    Google Scholar 

  • International symposium on fast breeder reactors: experience and future trends, Lyon, France, 22–26 July 1985

    Google Scholar 

  • Iritani Y et al (1991) Development of advanced numerical simulation of thermal stratification by highly-accurate numerical method and experiments. In: Proceedings of the international conference on fast reactor and related fuel cycles, Kyoto, Japan

    Google Scholar 

  • Iwai T, Nakajima K, Arai Y, Suzuki Y (1996) Fission gas release of uranium–plutonium mixed nitride and carbide fuels. IAEA-TECDOC-970. Studies on fuels with low fission gas release

    Google Scholar 

  • Iwasaki T, Konashi K, (2009) Development of hydride absorber for fast reactor, Application of hafnium hydride to control rod of large fast reactor. J Nucl Sci Tech 46(8):874-882

    Google Scholar 

  • Jackson JF, Nicholson RB (1972) VENUS-II; a LMFBR disassembly program. ANL-7951

    Google Scholar 

  • Jasserand F Etudes de radioprotection dédiées au réacteur RNR-Na pour la configuration de cœur Valentin V2B. Rapport DM2S/SERMA/LPEC/RT/09-4694/A

    Google Scholar 

  • Justin F, Natta M, Orzoni G (1985) Safety criteria for the future LMFBRs in France and main safety issues for the Rapide 1500 project. In: Proceedings of the international topical meeting on fast reactor safety, Knoxville

    Google Scholar 

  • Kaguchi H et al (1999) Strain limits for structural integrity assessment of fast reactors under CDA. In: Proceedings of ICONE-7, Tokyo,Japan

    Google Scholar 

  • Kasahara, Lejeail (2002) Frequency response approach for thermal fatigue induced by random fluctuation of fluid temperature. ASME, PVP

    Google Scholar 

  • Kasahara et al (2002) Structural response function approach for evaluation of thermal striping phenomena. Nucl Eng Des 212:281–292

    Google Scholar 

  • Kazimi MS, Tsai SS, Gasser RD (1977) Post accident fuel relocation and heat removal in LMFBR. BNL-50570

    Google Scholar 

  • Kikuchi K et al (2004) Lead-bismuth eutectic compatibility with materials in the concept of spallation target for ADS. JSME Int J Ser B Fluids Thermal Eng 47(2):332–339

    Google Scholar 

  • Kobus H (1991) Introduction to air–water flows. In: Wood IR (ed) Air entrainment in free surface flows. IAHR hydraulic structures design manual. A.A. Balkema, Rotterdam

    Google Scholar 

  • Kondo M et al (2005) Metallurgical study on erosion and corrosion behaviors of steels exposed to liquid lead-bismuth flow. J Nucl Mater 343(1–3):349–359

    Google Scholar 

  • Kondo M et al (2006a) Corrosion resistance of Si- and Al-rich steels in flowing lead-bismuth. J Nucl Mater 356(1–3):203–212

    Google Scholar 

  • Kondo M et al (2006b) Study on control of oxygen concentration in lead-bismuth flow using lead oxide particles. J Nucl Mater 357(1–3): 97–104

    Google Scholar 

  • Konys J et al (2004) Oxygen measurements in stagnant lead-bismuth eutectic using electrochemical sensors. J Nucl Mater 335(2): 249–253

    Google Scholar 

  • Kotake S et al (1993) Application of the PSA method to decay heat removal systems in large scale FBR design. In: Proceedings of the IAEA specialists’ meeting on evaluation of decay heat removal by natural convection, Oarai, Japan

    Google Scholar 

  • Latgé PhD (October 1981) Study of the Na2O crystallization in liquid sodium. Application to the sodium purification in SFR

    Google Scholar 

  • Latge S, Sellier (1993) Oxidation of zirconium–titanium alloys in liquid sodium: validation of a hot trap, determination of the kinetics. In: Borgstedt HU (ed) Material behaviour and physical chemistry in liquid metal systems, vol 2. Plenum Press, New York

    Google Scholar 

  • Laxman D et al (2004) Free level fluctuations study in 1 ∕ 4 scale reactor assembly model of PFBR. In: NUTHOS-6, Nara, Japan, 4–8 October

    Google Scholar 

  • Le RC, Kayer G (1979) An internal core catcher for a pool type LMFBR and connected studies. In: Proceedings of international meeting on fast reactor safety technology, Seattle

    Google Scholar 

  • Lee YK, Hugot FX Validation/qualification du code Monte Carlo TRIPOLI-4.4 en neutronique-criticité: résultats. Rapport SERMA/LEPP/RT/05-3613/A

    Google Scholar 

  • Lee YK, Hugot FX Validation/qualification du code Monte Carlo TRIPOLI-4.4 en protection: résultats. Rapport SERMA/LEPP/RT/05-3621/B

    Google Scholar 

  • Lejeail, Kasahara (2005) Thermal fatigue evaluation of cylinders and plates submitted to fluid temperature fluctuations. Int J Fat 27:768–772

    Google Scholar 

  • Lenoir G et al (1981) Thermal hydraulics of the annular spaces in roof slab penetrations at liquid sodium cooled fast breeder reactor. In: Sixth international conference on structural mechanics in reactor technology, Paris, pp 104–118

    Google Scholar 

  • Libman J (1996) Elements of nuclear safety. Les Editions de Physiques

    Google Scholar 

  • Liquid metal cooled reactors: experience in design and operation. (2007). IAEA TECDOC – 1569

    Google Scholar 

  • Liquid metal fast breeder reactor steam generator design and experience in UK. (1986). Nuclear Energy 6:355–360

    Google Scholar 

  • Louvet J, Hamon P, Smith BL, Zucchini A (1987) MARA 10: an integral model experiment in support of LMFBR containment analyses. In: Ninth SMIRT, vol E

    Google Scholar 

  • Marth W (1988) Sodium – still the best coolant for fast breeder reactor. In: Proceedings of LIMET, SFEN, AvignonSFEN

    Google Scholar 

  • Martin Ph, Rouault J, Serpantie J-P, Verwaerde D French program towards a GEN IV sodium cooled fast reactor. In: ENC 2007, Brussels, Belgium, 16–20 Sept 2007

    Google Scholar 

  • Martin P, Pelletier M, Every D, Buckthorpe D (eds) (2008) French and United Kingdom experience of high-burnup mixed-oxide fuel in sodium-cooled fast breeder reactors. Nucl Tech 161:35

    Google Scholar 

  • Maruyama T, Onose S, Kaito T, Oriuchi H (1997) Effect of fast neutron irradiation on the properties of boron carbide pellet. J Nucl Sci Tech 34(10):1006

    Google Scholar 

  • Maruyama T, Onose S (1999) Fabrication and properties of boron carbide/copper cermet, J Nucl Sci Tech 36(4):380

    Google Scholar 

  • Matsuura S, Nakamura H (1997) Shear bending buckling analysis of fast breeder reactor main vessel. In: Seismic resistance of FBR components influenced by buckling. Kajma Institute, Japan

    Google Scholar 

  • Matzke Hj (1986) Science of advanced LMFBR fuels. North Holland Physics Publishing, Holland

    Google Scholar 

  • Mejane H, Durin M (1982) Natural convection in an open annular slot. In: Proceedings of seventh international heat transfer conference, Meichen, Germany

    Google Scholar 

  • Menant B, Villand M (1994) Thermal fluctuations induced in conducting wall by mixing sodium jets: an application of TRIO-VF using large eddy simulation modeling. In: IAEA specialist meeting on correlation between material properties and thermohydraulics conditions in liquid metal-cooled fast reactors (LMFRs), Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Mineral commodity summaries 2007 US Geological Survey, Ed. Washington, 2007

    Google Scholar 

  • Miyahara S et al (2006) Reaction, transport and settling behavior of lead-bismuth eutectic in flowing liquid sodium. In: Proceedings of 14th international conference of nuclear engineering (ICONE), ASME, Miami

    Google Scholar 

  • Moriya S et al (1988) Thermal striping in coaxial jets of sodium, water and air. In: Proceedings of the fourth international conference on liquid metal engineering and technology, Avignon, France

    Google Scholar 

  • Müller G et al (2002) Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 ̈C after 2000 h. J Nucl Mater 301(1):40–46

    Google Scholar 

  • Müller G et al (2003) Control of oxygen concentration in liquid lead and lead-bismuth. J Nucl Mater 321(2–3):256–262

    Google Scholar 

  • Muramatsu T (1993a) Intensity and frequency evaluation of sodium temperature fluctuation related to thermal striping phenomena based on numerical methods. In: Proceedings of the fifth international symposium on refined flow modelling and turbulence measurements, Paris, France, 1993

    Google Scholar 

  • Muramatsu T (1993b) Frequency evaluation of temperature fluctuations related to thermal stripping phenomena using a direct numerical simulation code DINUS-3. In: Proceedings of ASME PVP conference, Colorado, vol 253

    Google Scholar 

  • Muramatsu T (1994a) Development of thermohydraulics computer programs for thermal striping phenomena. In: IAEA specialist meeting on correlation between material properties and thermohydraulics conditions in liquid metal-cooled fast reactors (LMFRs), Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Muramatsu T (1994b) Investigation on the reduction measures of coolant temperature fluctuations based on numerical methods in LMFR designs. In: IAEA specialist meeting on correlation between material properties and thermohydraulics conditions in liquid metal-cooled fast reactors (LMFRs), Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Muramatsu T (1998a) Computer code developments and their validations for the thermal striping phenomena in PNC. In: Third research coordination meeting (RCM) of the IAEA coordinated research programme (CRP) on harmonization and validation of fast reactor thermomechanical and thermohydraulic codes and relations using experimental data, France

    Google Scholar 

  • Muramatsu T (1998b) Numerical analysis of non-stationary thermally response characteristics for a fluid–structure interaction system. In: ASME/JSME pressure vessels and piping conference, USA, 1998

    Google Scholar 

  • Muramatsu T, Ninokata H (1991) Intensity evaluation of the temperature fluctuations related to thermal striping phenomena using the algebraic stress turbulence model. In: Proceedings of ANS winter meeting, San Francisco, pp 156–162

    Google Scholar 

  • Nam HO et al (2008) Dissolved oxygen control and monitoring implementation in the liquid lead-bismuth eutectic loop: HELIOS. J Nucl Mater 376(3):381–385

    Google Scholar 

  • Noraiki Takahashi et al (1989) Study of an advanced fuel handling system. Nucl Technol 86

    Google Scholar 

  • Noden JN (1972) A general equation for the solubility of O2 in liquid. Sodium British Report RB/B/N 2500

    Google Scholar 

  • Nonaka N, Sato I (1992) Improvement of evaluation method for initiating-phase energetics based on CABRI-1 in-pile experiments. Nucl Tech 98:54

    Google Scholar 

  • Ogata A, Yokoo A (1999) Development and validation of ALFUS: an irradiation behaviour analysis code for metallic fast reactor fuels. Nucl Tech 128:113–123

    Google Scholar 

  • Ohshime H et al (1994) Current status of studies on temperature fluctuation phenomena in LMFBRs. IAEA-IWGFR/90. In: Specialists meeting on correlation between material properties and thermohydraulics conditioning in LMFBRs, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Olander DR (1976) Fundamental aspects of nuclear reactor fuel elements. ERDA Technical Information Center, Oak Ridge

    Google Scholar 

  • Old CF (1980) Liquid metal embrittlement of nuclear materials. J Nucl Mater 92:2–25

    Google Scholar 

  • Om Pal Singh, Harish R (1998) Results of transient calculations up to onset of boiling of a comparative calculation for unprotected loss of flow accident in BN-800 type reactor with near zero void reactivity coefficient. In: IAEA/EC consultancy meeting on the comparative calculations for severe accident in BN-800 reactor, Obninsk, Russia, 2–16 June 1998

    Google Scholar 

  • Operating experience on fast reactor. (1986). Nucl Ene 2:73–84

    Google Scholar 

  • Ostensen RW, Henry RE, Jackson JF, Goldfuss GT, Gunther WH, Parker NE (1974) Fuel flow and freezing in the upper subassembly structure following an LMFBR disassembly. Trans Amer Nucl Soc 18:214

    Google Scholar 

  • Pacheco JE (2002) Final test and evaluation results for the solar two project, SAND 2002-0120, Sandia National Laboratories, Albuquerque

    Google Scholar 

  • Pahl et al (1988) Experimental studies of U–Pu–Zr fast reactor fuel pins in EBR-II. Conf 8009202-2

    Google Scholar 

  • Papazoglou IA, Aneziris ON (2003) Master logic diagram: method for hazard and initiating event identification in progress plants. Journal of Hazardous Material A97:11–30

    Google Scholar 

  • Pascal P Nouveau traité de chimie minérale, vol II – Lithium. Sodium Edition Masson et Cie

    Google Scholar 

  • Petiot P, Seiler JM, CEN G (Grenoble) (1984) Physical properties of sodium: a contribution to the estimation of critical coordinates. High Temperatures High Pressures 16:289–293

    Google Scholar 

  • Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science; Elsevier Science, Elsevier, Amesterdam

    Google Scholar 

  • Porten DR et al (1981) Internal fuel motion as inherent shutdown mechanism. In: Proceedings of topical meeting on reactor safety aspects of fuel behaviour, Sun Valley, Idaho

    Google Scholar 

  • Presentation by AEA Technology – UK (1994) Thermal striping benchmark exercise: thermal hydraulic analysis of the T-junction. In: Proceedings of specialists meeting on correlations between material properties and thermohydraulics conditions in LMFR, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Proceeding of international conference on fast reactors and related fuel cycles (FR’91), Kyoto, 28 October–1 November 1991

    Google Scholar 

  • Raj B (2007) Assessment of Indian INS. In: INPRO meeting, CEA, Cadarache, 7 February2007

    Google Scholar 

  • Rasmussen NC (1975) Reactor safety study: an assessment of accident risks in US commercial nuclear power plants. WASH 1400-NUREG-75/014. US DOE

    Google Scholar 

  • RCC-MR (2007a) Règles de Conception et de Construction des Matériels Mécaniques des Installations Nucléaires. AFCEN editions

    Google Scholar 

  • RCC-MR (2007b) RB 3261.1112, out of the creep range/RB 3262.1112, in the creep range. AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007c) RB 3261.114, out of the creep range/RB 3262.1131, in the creep range, 2007 issue. AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007d) RB3261.115, out of the creep range/RB 3262.114, in the creep range, 2007 issue. AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007e) Section I, Design and construction rules for mechanical components of nuclear installations. RCC-MR, Subsection Z, Appendix A12, AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007f) Section I, Design and construction rules for mechanical components of nuclear installations. RCC-MR, Subsection Z, Appendix A7, AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007g) Section I, Design and construction rules for mechanical components of nuclear installations. RCC-MR, Subsection Z, Appendix A3, AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007h) Section I, Design and construction rules for mechanical components of nuclear installations. RCC-MR, Subsection B, AFCEN, Paris

    Google Scholar 

  • RCC-MR (2007i) RB3261. 123. AFCEN, Paris

    Google Scholar 

  • RCC-MR(2002) Design and construction rules for mechanical components for FBR nuclear islands, Section I, Subsection B, Class 1 Components, AFCEN, 2002.

    Google Scholar 

  • Roche JL, Nouailhas D (1989) A unified constitutive model for cyclic viscoplasticity and its applications to various stainless steels. ASME J Eng Mater Technol 111:424–430

    Google Scholar 

  • Ronchi C, Campana M, Coquerelle M, Van de Laar J (1984) Reactor performance of MC, MN, MCN and MCO: results of the comparative irradiation experiments. European Applied Research–Nuclear Science Technology, Gocar, vol 6, nos 1 and 2, p. 323

    Google Scholar 

  • Roubin P et al (1988) Thermal-hydraulic study of LMFBR hot pool with internal storage. An experimental and computational approach. In: Proceedings of the fourth international conference on liquid metal engineering and technology, Avignon, France

    Google Scholar 

  • Roux S, Elie D (1988) Comparison between measurement and computational analysis on open azimutal thermosyphons in annular space of the Lilliput model. In: Liquid metal engineering and technology, pp 410_1–410_12

    Google Scholar 

  • RSWG (2008) Basis for the safety approach for design & assessment of generation IV nuclear systems. November 24, 2008

    Google Scholar 

  • Saez M et al (2007) Thermal criteria to compare fast reactors coolants for the intermediate loop. In: Proceedings of GLOBAL 07 – advanced nuclear fuel cycles and systems, ANS, Boise

    Google Scholar 

  • Safety of nuclear power plants: design (2000). IAEA safety standards series, NS-R-1. IAEA

    Google Scholar 

  • Sathiyasheela T, Harish R, Om Pal Singh (1998) A comparative study of ULOF for BN-800 reactor with non-zero sodium void coefficient. RPD/SAS-101

    Google Scholar 

  • Scherbakov SI (1994) Computational investigations of thermohydraulic aspects of two convergent flows at different temperatures mixed in the Tee junction area. In: Proceedings of specialists meeting on correlations between material properties and thermohydraulics conditions in LMFR, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Section III, Div 1, Subsection NH, Class 1 Components in elevated temperature service, 2001

    Google Scholar 

  • Seran JL, Levy V, Dubuisson P, Gilbon D, Maillard A, Fissolo A, Touron H, Cauvin R, Chalony A, Le Boulbin E (1992) Behavior under neutron irradiation of the 15-15Ti and EM10 steels used as standard materials of the Phénix fuel subassembly. In: Proceedings of 15th international symposium: effects of radiation on materials, p. 1209. ASTInternational

    Google Scholar 

  • Shuh PY, CC Scott (December 2005) Attenuation measurements of sound and performance of ultrasonic transducers in 600°F liquid Na. APDA-180

    Google Scholar 

  • Siegel R, Norris RH (1957) Transactions of ASME 79(I):663–673

    Google Scholar 

  • Sienicki J, Moisseytsev A, Cho D, Momozaki Y, Kilsdonk D, Haglund R, Reed C, Farmer M (2007) Supercritical carbon dioxide Brayton cycle energy conversion for sodium-cooled fast reactors/advanced burner reactors. In: GLOBAL ’07 – advanced nuclear fuel cycles and systems, Boise, 9–13 Sept 2007

    Google Scholar 

  • Sigrist JF, Broc D (2007) Dynamic analysis of a tube bundle with fluid structure interaction modelling using a homogenization method. Computer Methods in Applied Mechanics and Engineering

    Google Scholar 

  • Silver et al Three-dimensional finite-element analysis of the cellular convection phenomena in the Clinch River Breeder Reactor Plant prototype pump

    Google Scholar 

  • Simeone D, Deschanels X, Berthier B, Tessier C, (1997) Experimental evidence of lithium migration out of an irradiated boron carbide material. J Nucl Mat 245:27

    Google Scholar 

  • Simon N, Latgé C, Gicquel L (2007) Investigation of sodium – carbon dioxide interactions with calorimetric studies. In: Proceedings of ICAPP2007, paper 7547, Nice Acropolis, France, 13-18 May 2007

    Google Scholar 

  • Smith MR (1990) Techniques for the investigation of scaling criteria for gas entrainment mechanisms in liquid metal cooled fast reactors. GEC Journal of Research 8: 49–56

    Google Scholar 

  • Sobolev VA, Kuzavkov NG (1994) Identification of places with fluid temperatures in BN 600 reactor and reactor systems. IAEA-IWGFR/90. In: Specialists meeting on correlation between material properties and thermohydraulics conditions in LMFBRs, Aix-en-Provence, France, 22–24 November 1994

    Google Scholar 

  • Srinivasan GS (2002) Kinetic studies of reactivity oscillations under seismic conditions. PFBR/01117/DN/1019. IGCAR report

    Google Scholar 

  • Status of French nuclear program. In: Meeting of the technical working group on fast reactors (TWG-FR), 26–29 May 2008

    Google Scholar 

  • Status of liquid metal cooled fast reactors technology. (1999). IAEA-TECDOC-1083

    Google Scholar 

  • Stevenson MG et al (1974) Current status and experimental basis of the SAS LMFBR accident analysis code system. In: Proceedings of international conference on fast reactor safety, Beverley Hills, California

    Google Scholar 

  • Subbotin VI et al (2002) Liquid metal coolants for nuclear power. Atomic Energy 92(1): 29–40

    Google Scholar 

  • Surle F et al (1993) Comparison between sodium stratification tests on the CORMORAN model and TRIO-VF computation. In: Proceedings of the sixth international topical meeting on nuclear reactor thermal hydraulics, Grenoble, France

    Google Scholar 

  • Tenchine D et al (1990) Sodium thermal-hydraulics in the pool LMFBR primary vessel. Nuclear Engineering and Design 124

    Google Scholar 

  • The BN-800 reactor – a new stage in fast reactor development. IAEA/SM/284. pp 209–216

    Google Scholar 

  • The nuclear fuel of pressurized water reactors and fast reactors – design and behaviour. (1999). In: Bailly H, Menessier D, Prunier C (eds) Collection du Commissariat à l’Energie Atomique. Lavoisier

    Google Scholar 

  • Thomson TJ, Beekerly JG (1964) The technology of nuclear rector safety, vol 1. MIT Press

    Google Scholar 

  • Timo DP (1954) Free convection in narrow vertical sodium annuli. Knolls Atomic Power Laboratory Report: 1082. Schenectady

    Google Scholar 

  • Tobita Y et al (1999) Evaluation of CDA energetics in the prototype LMFBR with latest knowledge and tools. In: Proceedings of ICONE-7, Tokyo

    Google Scholar 

  • Toda et al (1990) Natural convection in a vertical narrow annular gap. In: Proceedings of ninth international heat transfer conference, Jerusalem, Israel, vol 2, pp 199–204

    Google Scholar 

  • Tokuhiro A, Kimura N (1999) An experimental investigation on thermal striping mixing phenomena of a vertical non-buoyant jet with two adjacent buoyant jets as measured by ultrasound Doppler velocimetry. J Nucl Eng Des

    Google Scholar 

  • Touboul F, Blay N, Lacire MH (1999) Experimental, analytical, and regulatory evaluation of seismic behavior of piping systems. J Pres Ves Tech 121(November):388–392

    Google Scholar 

  • Touboul F, Blay N, Sollogoub P, Chapuliot S (2006) Enhanced seismic criteria for piping. Nucl Eng Des 236(1):1–9. Janvier

    Google Scholar 

  • Tourasse M, Boidron M, Pasquet B (1992) Fission product behaviour in Phenix fuel pins at high burn up. J Nucl Mater 187:122

    Google Scholar 

  • Tsilanizara A, Huyhn TD, Jouanne C, Luneville L Guide d’utilisation du logiciel Darwin/Pepin2 version 2.2. Rapport DM2S/SERMA/LPEC/RT/07-4168/A

    Google Scholar 

  • Vaidyanathan G An overview of activities pertaining to heat and mass transfer in reactor cover gas of FBTR. In: Proceedings of specialists meeting on hat and mass transfer in cover gas, IWGFR-57, Harewell, England

    Google Scholar 

  • Vanavaramban S (2008) Solidus and liquidus temperatures for metallic fuels. CG

    Google Scholar 

  • Velusamy K et al (2005) Investigations of thermal striping in primary circuit of prototype fast breeder reactor. In: Proceedings of ICONE 13, Beijing, China

    Google Scholar 

  • Wada et al (1995) Mechanism-based evaluation of thermal ratchetting due to moving temperature distribution. ASME PVP 313(2):471–480

    Google Scholar 

  • Wakamatsu M et al (1995) Attenuation of temperature fluctuations in thermal striping. Journal of Nuclear Science and Technology 32(8)

    Google Scholar 

  • Wakamatsu M, Nei H, Hashiguchi K (1995) Attenuation of temperature fluctuations in thermal striping. Journal of Nuclear Science and Technology 32(8):752–762

    Google Scholar 

  • Walker RA et al (1970) The solubilities of bismuth and tellurium in liquid sodium. J Nucl Mater 34:165–173

    Google Scholar 

  • Waltar AE, Reynolds AB (1981) Fast breeder reactors. Pergamon Press

    Google Scholar 

  • Walter AE, Reynolds AB (1982) Fast breeder reactor. Pergamon, UK

    Google Scholar 

  • Walters et al (1984) Performance of metallic fuels and blankets in liquid metal breeder reactors. Nuclear Technology 65:179–231

    Google Scholar 

  • Walters, Reynolds Fast breeder reactors. Pergamon

    Google Scholar 

  • Wang CY, ICECO (December 1975) An implicit Eulerian method for calculating fluid transient in fast reactor containment. ANL-75-81

    Google Scholar 

  • Weeks JR (1971) Lead, bismuth, tin and their alloys as nuclear coolants. Nucl Eng Design 15:363

    Google Scholar 

  • Weisenburger A et al (2008) T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions. J Nucl Mater 376(3): 274–281

    Google Scholar 

  • Wider HU et al (1982) Status and validation of the SAS4A accident analysis code system. In: Proceedings of LMFBR safety topical meeting, ANS, France

    Google Scholar 

  • Winterton RHS (1972) Cover-gas bubbles in recirculating sodium primary coolant. Nuclear Engineering and Design 22:262–271

    Google Scholar 

  • Wittingham (1976) An equilibrium and kinetic study of the liquid sodium hydrogen reaction. Journal of Nuclear Materials 60:119

    Google Scholar 

  • Working Group Report – A Technology Roadmap Generation. (December 2002). GIF-007-00

    Google Scholar 

  • Yamakawa M (1983) Thermal hydraulic analysis in LMFBR plenum. In: International conference on numerical methods in nuclear engineering, Montreal, Canada

    Google Scholar 

  • Yamakawa et al (1986) Analysis of natural convection in narrow annular gaps of LMFBR. Journal of Nuclear Science and Technology 23(5): 451–460

    Google Scholar 

  • Yamano H et al (2008) Development of 3-D CDA analysis code: SIMMER-IV and its application to reactor case. Nuclear Engineering and Design 238:66

    Google Scholar 

  • Yevick JG (1966) Fast reactor technology. Plant design. MIT Press, USA

    Google Scholar 

  • Yokoo et al (August 2000) A design study on the FBR metal fuel and core for commercial applications. Nucl Sci Tech 37(8): 636–645

    Google Scholar 

  • Zimmermann H (1982) Investigation of swelling of U–Pu mixed carbide. J Nucl Mater 105:56

    Google Scholar 

  • Zuppiroli L, Lesueur D (1989) Modelling the swelling and microcracking of boron carbide under neutron irradiation. Phil Mag 60(5):539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Rouault, J. et al. (2010). Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety. In: Cacuci, D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98149-9_21

Download citation

Publish with us

Policies and ethics