Evaluated Nuclear Data

  • Pavel Obložinský
  • Michal Herman
  • Said F. Mughabghab
Reference work entry


This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play a dominant role in most of the applications, followed by coolants/moderators, structural materials, and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterward, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering, and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1, and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.


Fission Product Resonance Parameter Critical Assembly Fission Cross Section Neutron Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It would not have been possible to write this chapter without results produced by the dedicated work of numerous scientists and colleagues over years, both in the USA and abroad. We are particularly grateful to members of CSEWG and many other colleagues who contributed to ENDF/B-VII.0 and other nuclear data libraries. We owe special thanks to the authors of the “Big Paper” on ENDF/B-VII.0 (Chadwick et al., 2006), which supplied most of the figures and served as the basis for preparing this chapter.


  1. Audi G, Bersillon O, Blachot J, Wapstra A (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3CrossRefGoogle Scholar
  2. Axel P (1962) Electric dipole ground state transition width strength function and 7 MeV photon interaction. Phys Rev 126:671CrossRefGoogle Scholar
  3. Band I, Trzhaskovskaya M, Nestor C Jr, Tikkanen P, Raman S (2002) Dirac-Fock internal conversion coefficients. At Data Nucl Data Tables 81:1CrossRefGoogle Scholar
  4. Běták E, Obložinský P (1993) Code PEGAS: preequilibrium exciton model with spin conservation and gamma emission. Technical report INDC(SLK)-001, IAEA/Slovak Academy of Sciences (Note: DEGAS is an extended version of the code PEGAS using two-parameteric p-h level densities.)Google Scholar
  5. Bjornholm S, Lynn J (1980a) The double-humped fission barrier. Rev Mod Phys 52:725–931CrossRefGoogle Scholar
  6. Bjornholm S, Lynn JE (1980b) The double-humped fission barrier. Rev Mod Phys 52:725CrossRefGoogle Scholar
  7. Blann M (1996) New precompound decay model. Phys Rev C 54:1341CrossRefGoogle Scholar
  8. Blann M, Chadwick MB (1998) New precompound model: angular distributions. Phys Rev C57:233Google Scholar
  9. Blann M, Chadwick MB (2000) Precompound Monte-Carlo model for cluster induced reactions. Phys Rev C 6203:4604Google Scholar
  10. Bohr N, Wheeler J (1939) The mechanism of nuclear fission. Phys Rev 56:426–450MATHCrossRefGoogle Scholar
  11. Bollinger LM, Thomas GE (1968) p-Wave resonances of 238U. Phys Rev 171:1293CrossRefGoogle Scholar
  12. Boukharaba N et al (2002) Measurement of the n-p elastic scattering angular distribution at En = 10 MeV. Phys Rev C 65:014004CrossRefGoogle Scholar
  13. Boykov G et al (1991) Prompt neutron fission spectra of 235U. Sov J Nucl Phys 53:392Google Scholar
  14. Brady M, England T (1989) Delayed neutron data and group parameters for 43 fissioning systems. Nucl Sci Eng 103:129–149Google Scholar
  15. Briggs JB et al (2004) International handbook of evaluated criticality safety benchmark experiments. Technical report NEA/NSC/DOC(95)04/I, Nuclear Energy Agency, Paris, FranceGoogle Scholar
  16. Brockhouse BN, Abou-Helal HE, Hallman ED (1967) Lattice vibrations in iron at 296K. Solid State Commun 5:211CrossRefGoogle Scholar
  17. Bucholz J, Frankle S (2002) Improving the LLNL pulsed-sphere experiments database and MCNP models. Trans Am Nucl Soc 86:433–435Google Scholar
  18. Buerkle W, Mertens G (1997) Measurement of the neutron-proton differential cross section at 14.1 MeV. Few Body Syst 22:11Google Scholar
  19. Capote R, Herman M, Obložinský P et al (2009) RIPL – reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets 110:3107CrossRefGoogle Scholar
  20. Carlson A, Pronyaev V, Smith D et al (2009) International evaluation of neutron cross section standards. Nucl Data Sheets 110:3215–3325CrossRefGoogle Scholar
  21. Cassette P (1992) SPEBETA programme de calcul du spectre en energie des electros emis par des radionucleides emetterus beta. Technical report CEA, Technical Note LPRI/92/307/J, CEA SaclayGoogle Scholar
  22. Chadwick M, Obložinský P, Blokhin A et al (2000) Handbook on photonuclear data for applications: cross-sections and spectra. Technical report IAEA-TECDOC-1178, International Atomic Energy AgencyGoogle Scholar
  23. Chadwick M, Obložinský P, Herman M, Greene N, McKnight R, Smith D, Young P, MacFarlane R, Hale G, Frankle S, Kahler A, Kawano T, Little R, Madland D, Moller P, Mosteller R, Page P, Talou P, Trellue H, White M, Wilson W, Arcilla R, Dunford C, Mughabghab S, Pritychenko B, Rochman D, Sonzogni A, Lubitz C, Trumbull T, Weinman J, Brown D, Cullen D, Heinrichs D, McNabb D, Derrien H, Dunn M, Larson N, Leal L, Carlson A, Block R, Briggs J, Cheng E, Huria H, Zerkle M, Kozier K, Courcelle A, Pronyaev V, van der Marck S (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107(12):2931–3118Google Scholar
  24. Cokinos D, Melkonian E (1977) Measurement of the 2200 m/sec neutron-proton capture cross section. Phys Rev C 15:1636CrossRefGoogle Scholar
  25. Conant J, Palmedo P (1971) Delayed neutron data. Nucl Sci Eng 44:173Google Scholar
  26. Courcelle A (2004) First conclusions of the WPEC Subgroup-22. In: Haight R, Chadwick M, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, pp 462–467Google Scholar
  27. CSEWG-Collaboration (2001) Evaluated nuclear data file ENDF/B-VI.8., Mar 5, 2010
  28. DeHart MD (1995) Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages. Technical report ORNL/TM-12973, ORNLGoogle Scholar
  29. Derrien H, Courcelle A, Leal L, Larson NM, Santamarina A (2004) Evaluation of 238U resonance parameters from 0 to 20 keV. In: Haight R, Chadwick M, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, pp 276–281Google Scholar
  30. Derrien H, Leal LC, Larson NM (2006) Evaluation of 232Th neutron resonance parameters in the energy range 0 to 4 keV. Technical report ORNL/TM-2006/53, ORNLGoogle Scholar
  31. Dilg W (1975) Measurement of the neutron-proton total cross section at 132 eV. Phys Rev C 11:103CrossRefGoogle Scholar
  32. dos Santos A, Diniz R, Fanaro L, Jerez R, de Andrade e Silva G, Yamaguchi M (2004) The experimental determination of the effective delayed neutron parameters of the IPEN/MB-01 reactor. In: PHYSOR, Chicago, April 25–29Google Scholar
  33. Dunford C (1971) Compound nuclear analysis programs COMNUC and CASCADE. Technical report T1-707-130-013, Atomics InternationalGoogle Scholar
  34. Dunford C (2005) ENDF utility codes, version 7.02. / nndcscr / endf / endf-util-7.02/, Dec 15, 2006
  35. Dunn M, Greene N (2002) AMPX-2002: a cross section processing system for generating nuclear data for criticality safety applications. Technical report, Transactions of the American Nuclear Society, ORNLGoogle Scholar
  36. England T, Rider B (1992) Evaluation and compilation of fission product yields. Technical report ENDF-349, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  37. England T, Rider B (1993) Nuclear modeling of the 239Pu(n, xn) excitation function. Technical report LA-UR-94-3106 ENDF-349, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  38. ENSDF (2006) ENSDF, Evaluated Nuclear Structure Data File., 15 Dec 2006
  39. Ethvignot T et al (2003) Prompt-fission-neutron average energy for 238U(n, f) from threshold to 200 MeV. Phys Lett B 575:221CrossRefGoogle Scholar
  40. Forrest R, Kopecky J, Sublet J-C (2003) The European activation file: EAF-2003 cross section library. Technical report FUS 486, United Kingdom AEAGoogle Scholar
  41. Forrest R, Kopecky J, Sublet J-C (2007) The European activation file: EAF-2007 neutron-induced cross section library. Technical report FUS 435, United Kingdom AEAGoogle Scholar
  42. Frankle S (2004a) Possible impact of additional collimators on the LLNL pulsed-sphere experiments. Technical report X-5:SCF-04-001 and LA-UR-05-5877, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  43. Frankle S (2004b) LLNL pulsed-sphere measurements and detector response functions. Technical report X-5:SCF-04-004 and LA-UR-05-5878, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  44. Frehaut J (2000) Coherent evaluation of nu-bar (prompt) for 235, 238U and 239Pu. Technical report JEFDOC-17, NEA, JEFF ProjectGoogle Scholar
  45. Frenkel Y (1939) On the splitting of heavy nuclei by slow neutrons. Phys Rev 55:987–987MATHCrossRefGoogle Scholar
  46. Fröhner F, Goel B, Fischer U (1982) FITACS computer code. Technical report ANL-83-4, Kernforschungszentrum Karslruhe, p 116 (Note: Presented at Specialists’ Meeting on Fast Neutron Capture Cross Sections, ANL.)Google Scholar
  47. Fu C, Hetrick D (1986) Update of ENDF/B-V Mod-3 iron: neutron-producing reaction cross sections and energy-angle correlations. ORNL/TM-9964, ENDF-341, ORNLGoogle Scholar
  48. Greenwood R, Helmer R, Putnam M, Watts K (1997) Measurement of β-decay intensity distributions of several fission-product isotopes using a total absorption γ-ray spectrometer. Nucl Instr Meth Phys Res A 390:95CrossRefGoogle Scholar
  49. Griffin PJ, Paviotti-Corcuera R (2003) Summary report of the final technical meeting on international reactor dosimetry file: IRDF-2002. Technical report INDC(NDS)-448, IAEA, Vienna, AustriaGoogle Scholar
  50. Grimes S et al (1978) Charged particle-producing reactions of 15-MeV neutrons on 51V and 93Nb. Phys Rev C 17:508CrossRefGoogle Scholar
  51. Hagura N, Yoshida T, Tachibana T (2006) Reconsideration of the theoretical supplementation of decay data in fission-product decay heat summation calculations. J Nucl Sci Technol 43:497–504CrossRefGoogle Scholar
  52. Hale GM (1992) Use of R-matrix methods in light element evaluations. In: Dunford C (ed) Proceedings of the international symposium on nuclear data evaluation methodology, Brookhaven National Laboratory, World Scientific, Singapore, pp 306–314Google Scholar
  53. Hale G (2008) Covariances from light-element R-matrix analyses. Nucl Data Sheets 109:2812CrossRefGoogle Scholar
  54. Hale GM et al (1990) Neutron-triton cross sections and scattering lengths obtained from p-3He scattering. Phys Rev C 42:438CrossRefGoogle Scholar
  55. Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev 87:366–373MATHCrossRefGoogle Scholar
  56. Herman M, Trkov A (2009) ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data file ENDF/B-VI and ENDF/B-VII. Technical report BNL-90365-2009, Brookhaven National LaboratoryGoogle Scholar
  57. Herman M, Reffo G, Weidenmüller HA (1992) Multistep-compound contribution to precompound reaction cross section. Nucl Phys A 536:124CrossRefGoogle Scholar
  58. Herman M, Obložinský P, Capote R, Sin M, Trkov A, Ventura A, Zerkin V (2005a) Recent developments of the nuclear reaction model code EMPIRE. In: Haight R, Chadwick M, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, p 1184Google Scholar
  59. Herman M, Capote R, Carlson B, Obložinský P, Sin M, Trkov A, Zerkin V (2005b) EMPIRE nuclear reaction model code, version 2.19 (Lodi)., Dec 15, 2006
  60. Herman M, Capote R, Carlson B, Obložinský P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715CrossRefGoogle Scholar
  61. Hofmann HM, Richert J, Tepel JW, Weidenmüller HA (1975) Direct reactions and Hauser-Feshbach theory. Ann Phys 90:403CrossRefGoogle Scholar
  62. Houk TL (1971) Neutron-proton scattering cross section at a few electron volts and charge independence. Phys Rev C 3:1886CrossRefGoogle Scholar
  63. ICRU (2000) ICRU-Report-63. In: Nuclear data for neutron and proton radiotherapy and for radiation protection, International Communications on Radiation Units and Measurements, BethesdaGoogle Scholar
  64. Ignatyuk A, Obložinský P, Chadwick M et al (1998) Handbook for calculations of nuclear reaction data: reference input parameter library (RIPL-1). Technical report TECDOC-1034, IAEA, ViennaGoogle Scholar
  65. Ignatyuk A, Lunev V, Shubin Y, Gai E, Titarenko N (2006) Evaluation of n + 232Th cross sections for the energy range up to 150 MeV. Provided to the IAEA CRP on Th-U cycle, see Report INDC(NDS)-0494, pp 8–12Google Scholar
  66. JEFF3 (2005) The JEFF-3.0 nuclear data library. Technical report JEFF Report 19, OECD Nuclear Energy AgencyGoogle Scholar
  67. Kalbach C (1988) Systematics of continuum angular distributions: extensions to higher energies. Phys Rev C 37:2350–2370CrossRefGoogle Scholar
  68. Kanda Y, Baba M (1999) WPEC-SG4 report: 238U capture and inelastic cross sections. Technical report NEA/WPEC-4, NEA, ParisGoogle Scholar
  69. Kawano T, Ohsawa T, Shibata K, Nakashima H (1999) Evaluation of covariance for fission neutron spectra. Technical report 99-009, JAERIGoogle Scholar
  70. Kawano T et al (2006) Production of isomers by neutron-induced inelastic scattering on 193Ir and influence of spin distribution in the preequilibrium process. Nucl Instr Meth 562:774CrossRefGoogle Scholar
  71. Keepin GR (1965) Physics of neutron kinetics. Addison-Wesley, New YorkGoogle Scholar
  72. Keinert J, Sax J (1987) Investigation of neutron scattering dynamics in liquid hydrogen and deuterium for cold neutron sources. Kerntechnik 51:19Google Scholar
  73. Kim H-I, Lee Y-O, Herman M, Mughabghab SF, Obložinský P, Rochman D (2006) Evaluation of neutron induced reactions for 32 fission products. Technical report BNL-77775-2007-IR, Brookhaven National LaboratoryGoogle Scholar
  74. Kim H-I, Herman M, Mughabghab SF, Obložinský P, Rochman D, Lee Y-O (2008) Evaluation of neutron cross sections for a complete set of Nd isotopes. Nucl Sci Eng 160:168Google Scholar
  75. Kinsey R (1979) ENDF-201: ENDF/B summary documentation. Technical report BNL-NCS-17541, National Nuclear Data Center, BNL (Note: 3rd Edition, ENDF/B-V Library.)Google Scholar
  76. Klein Meulekamp R, van der Marck S (2006) Re-evaluation of the effective delayed neutron fraction measured by the substitution technique for a light water moderated low-enriched uranium core. Nucl Sci Eng 152:142–148Google Scholar
  77. Kokoo O, Murata I, Takahashi A (1999) Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons. Nucl Sci Eng 132:16Google Scholar
  78. Koning AJ, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231CrossRefGoogle Scholar
  79. Koning A, Hilaire S, Duijvestijn M (2004) TALYS: comprehensive nuclear reaction modeling. In: Haight R, Chadwick M, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, pp 1154–1159Google Scholar
  80. Kopecky J, Uhl M (1990) Test of gamma-ray strength functions in nuclear-reaction model-calculations. Phys Rev C 41:1941–1955CrossRefGoogle Scholar
  81. Koppel J, Houston D (1978) Reference manual for ENDF thermal neutron scattering data, report GA-8774 revised and reissued as ENDF-269 by the National Nuclear Data Center, General Atomic, July 1978Google Scholar
  82. Kosako K (2001) Covariance data processing code: ERRORJ. In: Katakura J (ed) The specialists’ meeting of reactor group constants, JAERI, Tokai, Japan, 22–23 February 2001, JAERI-Conf 2001-009, p 30Google Scholar
  83. Kosako K, Yanano N (1999) Preparation of a covariance processing system for the evaluated nuclear data file, JENDL. Technical report JNC TJ-9440, 99-003, JAERIGoogle Scholar
  84. Lane A, Lynn, J (1957) Fast neutron capture below 1 MeV: the cross sections for 238U and 232Th. Proc Phys Soc (London) A 70:557Google Scholar
  85. LANL (2009) Webpage, T-2 Information Service, Los Alamos National Laboratory, Los Alamos., Dec 15, 2009
  86. Larson NM (2006) Updated users’ guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes’ equations. Technical report ORNL/TM-9179/R7, Document ENDF-364, ORNLGoogle Scholar
  87. Leal L, Derrien H (2006) Evaluation of the resonance parameters for 232Th in the energy range 0 to 4 keV. Technical report, ORNLGoogle Scholar
  88. Leal LC, Derrien H, Larson NM, Courcelle A (2004) An unresolved resonance evaluation for 235U. In: PHYSOR conference, Chicago, 25–29 April 2004Google Scholar
  89. Little R, Kawano T, Hale G et al (2008) Low-fidelity covariance project. Nucl Data Sheets 109:2828Google Scholar
  90. Lopez Aldama D, Trkov A (2004) FENDL-2.1 update of an evaluated nuclear data library for fusion applications. Technical report INDC(NDS)-467, IAEA, Vienna, AustriaGoogle Scholar
  91. López Jiménez M, Morillon B, Romain P (2004) Overview of recent Bruyères-le-Châtel actinide evaluations. In: Haight R, Chadwick M, Kawano T, Talou P (eds) Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, pp 314–316Google Scholar
  92. Lougheed RW et al (2001) 239Pu and 241Am (n,2n) cross section measurements near 14 MeV. Technical report UCRL-ID-145592, Lawrence Livermore National LaboratoryGoogle Scholar
  93. MacFarlane RE (1994) New thermal neutron scattering files for ENDF/B-VI release 2. Technical report LA-12639-MS (1994), Los Alamos National Laboratory, Los AlamosGoogle Scholar
  94. MacFarlane RE, Muir DW (1994) The NJOY nuclear data processing system, version 91. Technical report LA-12740-M, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  95. MacFarlane RE, Kahler AC (2009) NJOY-99.304, (5 October 2009)
  96. Madland D (2006) Total prompt energy release in the neutron-induced fission of 235U, 238U, and 239Pu. Nucl Phys A 772:113CrossRefGoogle Scholar
  97. Madland DG, Nix JR (1982) New calculation of prompt fission neutron-spectra and average prompt neutron multiplicities. Nucl Sci Eng 81:213–271Google Scholar
  98. Magurno B, Kinsey R, Scheffel F (1982) Guidebook for the ENDF/B-V nuclear data files. Technical report EPRI NP-2510, BNL-NCS-31451, ENDF-328, Brookhaven National Laboratory and Electric Power Research InstituteGoogle Scholar
  99. Marchetti A, Hedstrom G (1998) New Monte Carlo simulations of the LLNL pulsed-sphere experiments. Technical report UCRL-ID-131461, Lawrence Livermore National LaboratoryGoogle Scholar
  100. Mattes M, Keinert J (2005) Thermal neutron scattering data for the moderator materials H2O, D2O, and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes. Report INDC(NDS)-0470, IAEAGoogle Scholar
  101. MCNPX (2006) MCNPX transport code for charged particles.
  102. Mughabghab SF (1984) Neutron cross sections: Z=61–100, vol 1B. Academic, New YorkGoogle Scholar
  103. Mughabghab SF (2006) Atlas of neutron resonances: thermal cross sections and resonance parameters. Elsevier, AmsterdamGoogle Scholar
  104. Mughabghab SF, Dunford CL (2000) A dipole-quadrupole interaction term in E1 photon transitions. Phys Lett B 487:155CrossRefGoogle Scholar
  105. Mughabghab SF, Divadeenam M, Holden NE (1981) Neutron cross sections: Z=1–60, vol 1A. Academic, New YorkGoogle Scholar
  106. Muir D (1976) Gamma rays, Q-values and kerma factors. Technical report LA-6258-MS, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  107. Muir DW (1989) Evaluation of correlated data using partitioned least squares: a minimum-variance derivation. Nucl Sci Eng 101:88–93Google Scholar
  108. Nakajima K (2001) Re-evaluation of the effective delayed neutron fraction measured by the substitution technique for a light water moderated low-enriched uranium core. J Nucl Sci Technol 38:1120–1125CrossRefGoogle Scholar
  109. NEA (2009) Webpage, Nuclear Energy Agency Data Bank.
  110. Nishioka H, Verbaarschot JJM, Weidenmüller HA, Yoshida S (1986) Statistical theory of precompound reactions: multistep compound process. Ann Phys 172:67CrossRefGoogle Scholar
  111. Obložinský P (ed) (2008) Workshop on neutron cross section covariances. In: Nuclear data sheets, vol 109, Port Jefferson, 24–28 June 2008, pp 2725–2922Google Scholar
  112. Obložinský P, Mattoon C, Herman M, Mughabghab S, Pigni M, Talou P, Hale G, Kahler A, Kawano T, Little R, Young P (2009a) Progress on nuclear data covariances: AFCI-1.2 covariance library. Technical report unpublished, Brookhaven National Laboratory and Los Alamos National LaboratoryGoogle Scholar
  113. Obložinský P et al (2009b) Evaluated data library for the bulk of fission products. Technical report NEA/WPEC-23, OECD Nuclear Energy Agency, ParisGoogle Scholar
  114. Oh S, Chang J, Mughabghab SF (2000) Neutron cross section evaluations of fission products below the fast neutron region. Technical report BNL-NCS-67469, Brookhaven National LaboratoryGoogle Scholar
  115. Ohsawa T, Hambsch F-J (2004) An interpretation of energy-dependence of delayed neutron yields in the resonance region for 235U and 239Pu. Nucl Sci Eng 148:50Google Scholar
  116. Ohsawa T, Oyama T (1999) Possible fluctuations in delayed neutron yields in the resonance region of U-235. In: Katakura J (ed) Proceedings of the specialists’ meeting on delayed neutron nuclear data, JAERI, American Institute of Physics, Tokaimura, Japan, p 43Google Scholar
  117. Okajima S, Sakurai T, Lebrat J, Averlant V, Martini M (2002) Summary on international benchmark experiments for effective delayed neutron fraction. Prog Nucl Energy 41:285–301CrossRefGoogle Scholar
  118. Olsen D, Ingle R (1981) Measurement of neutron transmission spectra through 232Th from 8 MeV to 4 keV. Report ORNL/TM-7661(ENDF-307), ORNLGoogle Scholar
  119. Perkins ST, Gyulassy GE (1972) An integrated system for production of neutronics and photonics calculational constants, vol 12. Technical report UCRL-50400, University of CaliforniaGoogle Scholar
  120. Pfeiffer B, Kratz K-L, Moller P (2002) Status of delayed-neutron data: half-lives and neutron emission probabilities. Prog Nucl Energy 41:39–69CrossRefGoogle Scholar
  121. Pigni M, Herman M, Obložinský P (2009) Extensive set of cross section covariance estimates in the fast neutron region. Nucl Sci Eng 162: 25–40Google Scholar
  122. Plettner C, Ai H, Beausang CW et al (2005) Estimation of (n,f) cross sections by measuring reaction probability ratios. Phys Rev C 71(5):051602CrossRefGoogle Scholar
  123. Plujko V, Herman M (2006) Handbook for calculations of nuclear reaction data, RIPL-2, ch. 7: gamma-ray strength functions. No. TECDOC-1506, IAEA, Vienna, p 120Google Scholar
  124. Porter CE, Thomas RG (1956) Fluctuations of nuclear reaction widths. Phys Rev 104:483–491CrossRefGoogle Scholar
  125. Pritychenko B, Sonzogni A (2008) Sigma: web retrieval interface for nuclear reaction data. Nucl Data Sheets 109:2822CrossRefGoogle Scholar
  126. Raynal J (1994) Notes on ECIS. CEA-N-2772, Commissariat à l’Energie AtomiqueGoogle Scholar
  127. Rochman D, Herman M, Obložinský P (2006) New evaluation of 51V(n, np+pn) and (n, t) cross sections for the ENDF/B-VII library. Fusion Eng Des 81:2109–2113CrossRefGoogle Scholar
  128. RSICC (2009) Webpage, Radiation Safety Information Computational Center.
  129. Sakurai T, Okajima S (2002) Adjustment of delayed neutron yields in JENDL-3.2. J Nucl Sci Technol 39:19–30CrossRefGoogle Scholar
  130. SCALE (2000) SCALE: a modular code system for performing standardized computer analysis for licensing evaluation. NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2/R6), vols I, II, and III, May 2000 (Available from the Radiation Safety Information Computational Center at ORNL as CCC-545.)Google Scholar
  131. Schoen K et al (2003) Precision neutron interferometric measurements and updated evaluations of the n-p and n-d coherent neutron scattering lengths. Phys Rev C 67:044005CrossRefGoogle Scholar
  132. Shibata K, Hasegawa A, Iwamoto O et al (2002a) JENDL-3.2 covariance file. J Nucl Sci Technol (2):40–43Google Scholar
  133. Shibata K, Kawano T, Nakagawa T et al (2002b) Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3. J Nucl Sci Technol 39:1125–1136CrossRefGoogle Scholar
  134. Sin M, Capote R, Herman M, Obložinský P, Ventura A, Trkov A (2004) Improvement of the fission channel in the EMPIRE code. In: Haight R, Chadwick M, Kawano T, Talou P (eds)Proceedings of the international conference on nuclear data for science and technology, American Institute of Physics, New York, Santa Fe, Sept 26–Oct 1, 2004, p 1249Google Scholar
  135. Sin M, Capote R, Ventura A, Herman M, Obložinský P (2006) Fission of light actinides: 232Th(n,f) and 231Pa(n,f) reactions. Phys Rev C 74(1): 014608CrossRefGoogle Scholar
  136. Smith DL (1991) Probability, statistics, and data uncertainties in nuclear science and technology. American Nuclear Society, LaGrange ParkGoogle Scholar
  137. Smith D (2004) Covariance matrices for nuclear cross sections derived from nuclear model calculations. Report ANL/NDM-159 November, Argonne National LaboratoryGoogle Scholar
  138. Soukhovitskii ES, Capote R, Quesada JM, Chiba S (2005) Dispersive coupled-channel analysis of nucleon scattering from 232Th up to 200 MeV. Phys Rev C 72:024604CrossRefGoogle Scholar
  139. Staples P et al (1995) Prompt fission neutron energy spectra induced by fast neutrons. Nucl Phys A 591:41–60CrossRefGoogle Scholar
  140. Stedman R, Almqvist L, Nilsson G (1967) Phonon-frequency distributions and heat capacities of aluminum and lead. Phys Rev 162:549–557CrossRefGoogle Scholar
  141. Tamura T, Udagawa T, Lenske H (1982) Multistep direct reaction analysis of continuum spectra in reactions induced by light ions. Phys Rev C 26:379CrossRefGoogle Scholar
  142. Trkov A (2003) 2nd IAEA research co-ordination meeting on evaluated nuclear data for thorium-uranium fuel cycle. Technical report INDC(NDS)-447, IAEA, ViennaGoogle Scholar
  143. Trkov A (2005) Summary report of a technical meeting on covariances of nuclear reaction data: GANDR project. INDC(NDS)-471, IAEA, ViennaGoogle Scholar
  144. Trkov A (2006) Evaluated nuclear data for Th-U fuel cycle summary report of the third research coordination meeting. Technical report INDC(NDS)-494, IAEA, ViennaGoogle Scholar
  145. Trkov A, Capote R (2006) Validation of 232Th evaluated nuclear data through benchmark experiments. In: Proceedings of the international conference on nuclear energy for new Europe 2006, Portorož, Slovenia, 18–21 Sept 2006Google Scholar
  146. Trkov A et al (2005) Revisiting the 238U thermal capture cross-section and gamma emission probabilities from 239Np decay. Nucl Sci Eng 150:336–348Google Scholar
  147. Tuli J (2005) Nuclear wallet cards. Electronic version.
  148. Tuttle R (1975) Delayed neutron data. Nucl Sci Eng 56:37Google Scholar
  149. van der Marck S (2005) Benchmarking ENDF/B-VII beta1. CSEWG 2005 meeting report. Dec 15, 2006
  150. van der Marck SC (2006) Benchmarking ENDF/B-VII.0. Nucl Data Sheets 107:3061–3118CrossRefGoogle Scholar
  151. van der Marck S, Klein Meulekamp R, Hogenbirk A, Koning A (2004) Benchmark results for delayed neutron data, AIP Conf. Proc. 769. American Institute of Physics. New York, Santa Fe, Sept 26–Oct 1, 2004, pp 531–534Google Scholar
  152. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1–2):121–127CrossRefGoogle Scholar
  153. Webster W et al (1976) Measurements of the neutron emission spectra from spheres of N, O, W, U-235, U-238, and Pu-239, pulsed by 14 MeV neutrons. Technical report UCID-17332Google Scholar
  154. Weigmann H, Hambsch J, Mannhart W, Baba M, Tingjin L, Kornilov N, Madland D, Staples P (2003) Fission neutron spectra of 235U. Report NEA/WPEC-9, OECDGoogle Scholar
  155. Wiarda D, Dunn M (2006) PUFF-IV: code system to generate multigroup covariance matrices from ENDF/B-VI uncertainty files. Radiation Safety Information Computational Center (RSICC) Code Package PSR-534, ORNLGoogle Scholar
  156. Williams M (2004) Generation of approximate covariance data. ORNL memo, August 2004Google Scholar
  157. Williams M, Rearden B (2008) SCALE-6 sensitivity/uncertainty methods and covariance data. Nucl Data Sheets 109:2797CrossRefGoogle Scholar
  158. Wilson W, England T (2002) Delayed neutron study using ENDF/B-VI basic nuclear data. Prog Nucl Energy 41:71–107CrossRefGoogle Scholar
  159. Woelfle R et al (1990) Neutron activation cross section measurements. Radiochimica Acta 50:5Google Scholar
  160. Wong C et al (1972) Livermore pulsed sphere program: program summary through July 1971. Technical report UCRL-51144, Rev I, and Addendum (1973), Lawrence Livermore National LaboratoryGoogle Scholar
  161. Wright RQ, MacFarlane RE (2000) Review of ENDF/B-VI fission-product cross sections. Technical report ORNL/TM-13723, ORNL, Oak RidgeGoogle Scholar
  162. X5-MCNP-Team (2003) MCNP – a general Monte Carlo N-particle transport code, version 5, volume I: overview and theory. Technical report LA-UR-03-1987, Los Alamos National LaboratoryGoogle Scholar
  163. Yoshida T et al (2006) Validation of fission product decay data for decay heat calculations. WPEC Subgroup-25., Dec 15 2006
  164. Younes W, Britt HC (2003) Neutron-induced fission cross sections simulated from (t,pf) results. Phys Rev C 67(2):024610CrossRefGoogle Scholar
  165. Young PG, Arthur ED (1977) GNASH: a preequilibrium statistical nuclear model code for calculations of cross sections and emission spectra. Technical report LA-6947, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  166. Young JA, Koppel JU (1964) Slow neutron scattering by molecular hydrogen and deuterium. Phys Rev 135:A603–A611CrossRefGoogle Scholar
  167. Young PG, Arthur ED, Chadwick MB (1992) Comprehensive nuclear model calculations: introduction to the theory and use of the GNASH code. Technical report LA-12343-MS, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  168. Young PG, Arthur ED, Chadwick MB (1998) Comprehensive nuclear model calculations: theory and use of the GNASH code. In: Gandini A, Reffo G (eds) Proceedings of the IAEA workshop on nuclear reaction data and nuclear reactors, World Scientific Publishing, Singapore, April 15–May 17 1998, pp 227–404Google Scholar
  169. Young P, Herman M, Obložinský P et al (2005) Handbook for calculations of nuclear reaction data: reference input parameter Library-2. TECDOC-1506, IAEA, ViennaGoogle Scholar
  170. Young P, Chadwick M, MacFarlane R, Talou P, Kawano T, Madland D, Wilson W, Wilkerson C (2007) Evaluation of neutron reactions for ENDF/B-VII: 232 − 241U and 239Pu. Nucl Data Sheets 108(12):2589–2654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pavel Obložinský
    • 1
  • Michal Herman
    • 1
  • Said F. Mughabghab
    • 1
  1. 1.National Nuclear Data CenterBrookhaven National LaboratoryUptonUSA

Personalised recommendations