Skip to main content

Noise Techniques in Nuclear Systems

  • Reference work entry
Handbook of Nuclear Engineering

Abstract

This chapter deals with neutron fluctuations in nuclear systems. Such neutron fluctuations, or neutron noise, fall into two categories: neutron noise in zero power systems and neutron noise in power reactors. The concepts, the theory, and the methodology of these fluctuations as well as their various applications for extracting information in a nonintrusive way about the system in question are described. A number of specific applications are described, where detection and analysis of zero power and power reactor noise make it possible to extract diagnostic information about the system by determining some parameters of the system during normal operation, or by detecting, identifying, and quantifying developing anomalies at an early stage and determining their severity. This chapter ends with an outline of future developments and actual issues in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adorján F, Czibók T, Kiss S, Krinizs K, Vgh J (2000) Core asymmetry evolution using static measurements and neutron noise analysis. Ann Nucl Energy 27(7):649–658

    Article  Google Scholar 

  • Baeten P (2004) Heuristic derivation of the Rossi-alpha formula for a pulsed neutron source. Ann Nucl Energy 31:43–53

    Article  Google Scholar 

  • Baeten P, Lafuente A, Janssens J, Kochetkov A, Pázsit I, Van Grieken G and Van den Eynde G (2010) Subcriticality determination using the 252Cf source-detector method. Ann Nucl Energy 37(5):672-680

    Article  Google Scholar 

  • Ballester D, Munoz-Cobo JL (2005) Feynman-Y function for a subcritical assembly with intrinsic spontaneous fissions driven by external pulsed sources. Ann Nucl Energy 32(5):493–519

    Article  Google Scholar 

  • Behringer K, Kosály G, Pázsit I (1979) Linear response of the neutron field to a propagating perturbation of moderator density (two-group theory of BWR noise). Nucl Sci Eng 72:304

    Google Scholar 

  • Bell GI (1965) On the stochastic theory of neutron transport. Nucl Sci Eng 21:390–401

    Google Scholar 

  • Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Bennett EF (1981) An experimental method for reactor-noise measurements of effective beta. ANL-81-72

    Google Scholar 

  • Blakeman ED (2009) Summary description of the 252Cf-source-driven noise analysis method for measurement of subcriticality. Oak Ridge National Laboratory internal report ORNL/TM-2008/187

    Google Scholar 

  • Böhnel K (1985) The effect of multiplication on the quantitative determination of spontaneous fissioning isotopes by neutron correlation analysis. Nucl Sci Eng 90:75

    Google Scholar 

  • Cacuci DG (1993) On chaotic dynamics in nuclear engineering systems. Nucl Technol 103: 303–309

    Google Scholar 

  • Cacuci DG, March-Leuba J, Perez RB (1986) Limit cycles and bifurcations in nuclear systems. Trans Am Nucl Soc 53:239

    Google Scholar 

  • Cifarelli D, Hage W (1986) Models for a three-parameter analysis of neutron signal correlation measurements for fissile material assay. Nucl Instrum Methods 251 (3):550–563

    Article  Google Scholar 

  • Croft S, Bourva LC-A (2000) The measurement of passive neutron multiplicity counter gate utilisation factors and comparisons with theory. Nucl Instrum Methods 453 (3):553–568

    Article  Google Scholar 

  • Czibók T, Kiss G, Kiss S, Krinizs K, Végh J (2003) Regular neutron noise diagnostics measurements at the Hungarian Paks NPP. Prog Nucl Energy 43:67–74

    Article  Google Scholar 

  • D’Auria F et al (1997) State of the art report on boiling water reactor stability – appendix B: methods for evaluating decay ratio. NEA report NEA/CSNI/R(96) 21, pp 333–341

    Google Scholar 

  • Degweker SB (1998) Simple formulae for interpretation of the dead time alpha (first moment) method of reactor noise. Ann Nucl Energy 26(15):1267–1273

    Article  Google Scholar 

  • Degweker SB (1999) An exact solution for a non-extending dead time problem in passive neutron assay. Ann Nucl Energy 25(15):387–401

    Article  Google Scholar 

  • Degweker SB (2000) Some variants of the Feynman alpha method in critical and accelerator driven sub critical systems. Ann Nucl Energy 27(14):1245–1257

    Article  Google Scholar 

  • Degweker SB (2003) Reactor noise in accelerator driven systems. Ann Nucl Energy 30:223

    Article  Google Scholar 

  • Degweker SB, Rana YS (2007) Reactor noise in accelerator driven system – II. Ann Nucl Energy 34:463–482

    Article  Google Scholar 

  • Demazière C (2004) Development of a 2-D 2-group neutron noise simulator. Ann Nucl Energy 19:647–680

    Article  Google Scholar 

  • Demazière C (2006) Analysis methods for the determination of possible unseated fuel assemblies in BWRs. Int J Nucl Energy Sci Technol 2(3):167–188

    Article  Google Scholar 

  • Demazière C, Pázsit I (2002) Online determination of the MTC (moderator temperature coefficient) by neutron noise and gamma-thermometer signals. In: Ruan D, Fantoni PF (eds) Power plant surveillance and diagnostics – modern approaches and advanced applications, Physica Verlag/Springer, Heidelberg, pp 135–157, ISBN 3–540–43247–7

    Google Scholar 

  • Demazière C, Pázsit I (2004) Development of a method for measuring the MTC by noise analysis and its experimental verification in Ringhals-2. Nucl Sci Eng 148 (1):1–29

    Google Scholar 

  • Demazière C, Pázsit I (2005) On the possibility of the space-dependence of the stability indicator (decay ratio) of a BWR. Ann Nucl Energy 32(12):1305–1322

    Article  Google Scholar 

  • Demazière C, Pázsit I (2008) Numerical tools applied to power reactor noise analysis. Prog Nucl Energy 51:67–81

    Article  Google Scholar 

  • Demazière C, Sunde C, Arzhanov V, Pázsit I (2003) Final report on the research project Ringhals diagnostics and monitoring, Stage 8. Chalmers report CTH-RF-177/RR-10, Chalmers University of Technology, Göteborg

    Google Scholar 

  • Enqvist A, Pázsit I, Pozzi SA (2006) The number distribution of neutrons and gamma photons generated in a multiplying sample. Nucl Instrum Methods 566:598–608

    Article  Google Scholar 

  • Enqvist A, Pázsit I, Avdic S (2010) Sample characterization using both neutron and gamma multiplicities. Nucl Instrum Methods A 615:62–69

    Article  Google Scholar 

  • Ensslin N, Harker WC, Krick MS, Langner DG, Pickrell MM, Stewart JE (1998) Application guide to neutron multiplicity counting. Los Alamos report LA-13422-M

    Google Scholar 

  • Fry DN (1971) Experience in reactor malfunction diagnosis using on-line noise analysis. Nucl Technol 10(3):273–282

    Google Scholar 

  • Fry DN, Kryter RC, Robinson JC (1974) Analysis of neutron-density oscillations resulting from core barrel motion in the Palisades nuclear power plant. Oak Ridge National Laboratory internal report ORNL-TM-4570

    Google Scholar 

  • Ginestar D, Miró R, Verdú G, Hennig D (2002) A transient modal analysis of a BWR instability event. J Nucl Sci Technol 39(5):554–563

    Article  Google Scholar 

  • Ginestar D, Verdú G, Miro R (2006) Singular system analysis of the local power range monitor (LPRM) readings of a boiling water reactor (BWR) in an unstable event. Int J Nucl Energ Sci Technol 2(3):253–265.

    Article  Google Scholar 

  • Graves HW Jr (1979) Nuclear fuel management. Wiley, New York

    Google Scholar 

  • Hage W, Cifarelli D (1985) On the factorial moments of the neutron multiplicity distribution of fission cascades. Nucl Instrum Methods 236(1):165–177

    Article  Google Scholar 

  • Harris DR (1964) Naval reactor physics handbook, vol I. United States Atomic Energy Commission, Washington, pp 1010–1142

    Google Scholar 

  • Hennig D (1999) A study on boiling water reactor stability behaviour. Nucl Technol 126(1):10–31

    MathSciNet  Google Scholar 

  • Henry AF (1958) The application of reactor kinetics to the analysis of experiments. Nucl Sci Eng 3:52–70

    Google Scholar 

  • Henry AF (1975) Nuclear-reactor analysis. The MIT Press, Cambridge

    Google Scholar 

  • Hotta A, Suzawa Y, Takeuchi H (1997) Development of BWR regional instability model and verification based on Ringhals 1 test. Ann Nucl Energy 24(17):1403–1427

    Article  Google Scholar 

  • Karlsson JK-H, Pázsit I, Gill RD (1997) Spectral and correlation analysis of soft X-ray signals from the Joint European Torus tokamak. Fusion Eng Des 34–35:175–178

    Article  Google Scholar 

  • Karlsson JK-H, Pzsit I (1998) Analysis of core barrel vibration in Ringhals2, 3 and 4 for several fuel cycles. Chalmers internal report CTH-RF-135/RR-5

    Google Scholar 

  • Karlsson JK-H, Pzsit I (1999) Localisation of a channel instability in the Forskmark-1 boiling water reactor. Ann Nucl Energi 26(13):1183–1204

    Article  Google Scholar 

  • Kitamura Y, Pázsit I, Wright J, Yamamoto A, Yamane Y (2005) Derivation of pulsed Feynman- and Rossi-alpha formulae including delayed neutrons. Ann Nucl Energy 32:671–692

    Article  Google Scholar 

  • Kitamura Y, Taguchi K, Misawa T, Pázsit I, Yamamoto A, Yamane Y, Ichihara C, Nakamura H, Oigawa H (2006) Calculation of the stochastic pulsed Rossi-alpha formula and its experimental verification. Prog Nucl Energy 48:37–50

    Article  Google Scholar 

  • Kleiss E, van Dam H (1978) Analysis of neutron detector response to bubbles in a water moderated reactor. Ann Nucl Energy 6(7–8):385–398

    Google Scholar 

  • Konno H, Kanemoto S, Takeuchi Y (1999) Parametric stochastic stability and decay ratio for a stochastic non-linear BWR model below the Hopf bifurcation. Ann Nucl Energy 26:1465

    Google Scholar 

  • Kosály G (1975) Investigation of the local component of power-reactor noise via diffusion theory. KFKI report, KFKI-75–27

    Google Scholar 

  • Kosály G (1980) Noise investigations in boiling-water and pressurized-water reactors. Prog Nucl Energy 5:145–199

    Article  Google Scholar 

  • Kosály G, Meskó L (1972a) Remarks on the transfer function relating inlet temperature fluctuations to neutron noise. Atomkernenergie 20:33–36

    Google Scholar 

  • Kosály G, Meskó L (1972b) Investigation of the cross correlation of coolant temperature fluctuations via the axial dependent two point model of heat transfer. Atomkernenergie 20:91–94

    Google Scholar 

  • Kuang ZF, Pázsit I (1999) The general backward theory of neutron fluctuations in subcritical systems with multiple emission sources. Il Nuovo Cimento 112 A:1067–1092

    Google Scholar 

  • Kuang ZF, Pázsit I (2002) The generalised theory of neutron noise in a random medium. Proc R Soc A 458:232–252

    Article  Google Scholar 

  • Lamarsh JR (2002) Introduction to nuclear reactor theory. American Nuclear Society, LaGrange Park

    Google Scholar 

  • Larsson V, Demazière C (2009) Comparative study of 2-group P1 and diffusion theories for the calculation of the neutron noise in 1D 2-region system. Ann Nucl Energy 36(10):1574–1587

    Article  Google Scholar 

  • Lathouwers D, Agung A, van der Hagen THJJ, van Dam H, Pain CC, De Oliveira CRE, Goddard AJH (2003) Dynamics modeling and stability analysis of a fluidized bed nuclear reactor. Prog Nucl Energy 43(1–4):437–443

    Article  Google Scholar 

  • Makai M, Kalya Z, Nemes I, Pos I, Pór G (2007) Evaluating new methods for direct measurement of the moderator temperature coefficient in nuclear power plants during normal operation. In: Proceedings of the 17th symposium of AER on VVER reactor physics and reactor safety, Yalta, September 24–29, 2007

    Google Scholar 

  • March-Leuba J, Cacuci DG, Perez RB (1983) Nonlinear dynamics of boiling water reactors. Trans Am Nucl Soc 45:725

    Google Scholar 

  • March-Leuba J, Cacuci DG, Perez RB (1984) Universality and aperiodic behavior of nuclear reactors. Nucl Sci Eng 86:401–404

    Google Scholar 

  • March-Leuba J, Cacuci DG, Perez RB (1986a) Nonlinear dynamics and stability of boiling water reactors, I: qualitative analysis. Nucl Sci Eng 93:111–123

    Google Scholar 

  • March-Leuba J, Cacuci DG, Perez RB (1986b) Nonlinear dynamics and stability of Boiling Water Reactors, II: quantitative Analysis. Nucl Sci Eng 93:124–136

    Google Scholar 

  • Mellier F (Co-ordinator) (2005) The MUSE experiments for sub critical neutronics validation. Final report of the EU-supported project MUSE, Contract No: FIKW-CT-2000-00063

    Google Scholar 

  • Mihalczo JT et al (1990) Dynamic subcriticality measurements using the 252Cf-source-driven neutron noise method. Nucl Sci Eng 104:314–338

    Google Scholar 

  • Miro R, Ginestar D, Hennig D, Verdu G (2000) On the regional oscillation phenomenon in BWRs. Prog Nucl Energy 36(2):189–229

    Article  Google Scholar 

  • Mogilner AI, Zolotukhin VG (1961) Atomnaya Energiya 10:377

    Google Scholar 

  • Munoz-Cobo JL, Perez RB, Verdú G (1987) Stochastic neutron transport theory: neutron counting statistics in nuclear assemblies. Nucl Sci Eng 95(2):83–105

    Google Scholar 

  • Munoz-Cobo JL, Chiva S, Sekhri A (2004) A reduced order model of BWR dynamics with subcooled boiling and modal kinetics: application to out of phase oscillations. Ann Nucl Energy 31(10):1135–1162

    Article  Google Scholar 

  • Munoz-Cobo JL, Pena J, Gonzalez E (2008) Rossi-alpha and Feynmann Y functions for non-Poissonian pulsed sources of neutrons in the stochastic pulsing method: application to subcriticality monitoring in ADS and comparison with the results of Poissonian pulsed neutron sources. Ann Nucl Energy 35(12): 2375–2386

    Article  Google Scholar 

  • OECD (2002) Reactor surveillance and diagnostics. In: Proceedings of the SMORN conferences. http://www.nea.fr/html/science/rsd/

  • Oguma R (1997) Application of noise analysis for the study of core local instability at Forsmark 1. SKI report 97:42, Statens Kärnkraftinspektion (Swedish Nuclear Power Inspectorate), Stockholm

    Google Scholar 

  • Ott KO, Neuhold RJ (1985) Introductory nuclear reactor dynamics. American Nuclear Society, La Grange Park

    Google Scholar 

  • Pacilio N (1970) Reactor-noise analysis in the time domain. United States Atomic Energy Commission, Washington

    Google Scholar 

  • Pál L (1958) On the theory of stochastic processes in nuclear reactors. Nuovo Cimento, Supplemento 7:25–42

    Article  MATH  Google Scholar 

  • Pál L, Pázsit I (2006) Neutron fluctuations in a multiplying medium randomly varying in time. Phys Scripta 74(1):62–70

    Article  MATH  Google Scholar 

  • Pál L, Pázsit I (2007) Theory of neutron noise in a temporally fluctuating multiplying medium. Nucl Sci Eng 155(3):425–440

    Google Scholar 

  • Pázsit I (1992) Dynamic transfer function calculations for core diagnostics. Ann Nucl Energy 19:303–312

    Article  Google Scholar 

  • Pázsit I (1995) Determination of reactor stability in case of dual oscillations. Ann Nucl Energy 22:377–387

    Article  Google Scholar 

  • Pázsit I (2002) Neutron noise theory in the P1 approximation. Prog Nucl Energy 40:217–236

    Article  Google Scholar 

  • Pázsit I (2003) Hugo van Dam and the dynamic adjoint function. Ann Nucl Energy 30:1757–1775

    Article  Google Scholar 

  • Pázsit I, Glckler O (1988) On the neutron noise diagnostics of PWR control vibrations, III: application at a power plant. Nucl Sci Eng 99(4):313–328

    Google Scholar 

  • Pázsit I, Garis NS, Glöckler O (1994) BWR instrument tube vibrations: interpretation of measurements and simulations. Ann Nucl Energy 21(12): 759–786

    Article  Google Scholar 

  • Pázsit I, Glöckler O (1996) On the neutron noise diagnostics of PWR control vibrations, IV: application of neural networks. Nucl Sci Eng 124(1):167–177

    Google Scholar 

  • Pázsit I, Kitamura M (1996) The role of neural networks in reactor diagnostics and control. Adv Nucl Sci Technol 24:95–130

    Article  Google Scholar 

  • Pázsit I, Pál L (2008) Neutron fluctuations – a treatise on the physics of branching processes. Elsevier Ltd., London/New York/Tokyo

    MATH  Google Scholar 

  • Pázsit I, Pozzi SA (2005) Calculation of gamma multiplicities in a multiplying sample for the assay of nuclear materials. Nucl Instrum Methods A 555: 340–346

    Article  Google Scholar 

  • Pázsit I, Karlsson JK-H, Garis NS (1998) Some developments in core-barrel vibration diagnostics. Ann Nucl Energy 25(13):1079–1093

    Article  Google Scholar 

  • Pázsit I, Kuang ZF, Prinja AK (2002) A unified theory of zero power and power reactor noise via backward master equations. Ann Nucl Energy 29(2):169–192

    Article  Google Scholar 

  • Pázsit I, Demaziére C, Sunde C, Bernitt C, Hernándes-Solz A (2008) Final report on the research project ringhals diagnostics and monitoring stage 12. Chalmers internal report CTH-NT-220/RR-14

    Google Scholar 

  • Pokol G, Pór G, Zoletnik S, The W7-AS Team (2007) Application of a bandpower correlation method to the statistical analysis of MHD bursts in quiescent Wendelstein-7 AS stellarator plasmas. Plasma Phys Control Fusion 49: 1391–1408

    Article  Google Scholar 

  • Pór G (1981) Investigations on the phase at low frequencies of the CPSD between detectors in the Borssele PWR power plant. ECN -81–131 report

    Google Scholar 

  • Pór G, Izsák E, Valkó J (1985) Some results of noise measurements in a PWR NPP. Prog Nucl Energy 15:387–393

    Article  Google Scholar 

  • Pór G, Berta M, Csuvar M (2003) Measurement of the coolant flow rate using correlation of temperature fluctuations. Prog Nucl Energy 43:281–288

    Article  Google Scholar 

  • Saito K (1979) Source papers in reactor noise. Prog Nucl Energy 3(3):157–218

    Article  Google Scholar 

  • Sanchez R (1989) Linear kinetic theory in stochastic media. J Math Phys 30:2498–2511

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez R, Pomraning GC (1991) A statistical analysis of the double heterogeneity problem. Ann Nucl Energy 18(7):371–395

    Article  Google Scholar 

  • Shiralkar B (2005) BWR stability analysis – phenomena and requirements. Talk given at the workshop on status and perspectives of coupled code analysis for BWRs, Royal Institute of Technology, Stockholm, June 27–28, 2005

    Google Scholar 

  • Sjöstrand NG (1956) Measurements on a subcritical reactor using a pulsed neutron source. Arkiv för Fysik 11:233–246

    Google Scholar 

  • Stacey WM Jr (1969) Space-time nuclear reactor kinetics. Academic, New York

    Google Scholar 

  • Takeuchi Y, Takigawa Y, Uematsu H (1994) A study on boiling water reactor regional stability from the viewpoint of higher harmonics. Nucl Technol 106 (3):300–314

    Google Scholar 

  • Thie JA (1959) Dynamic behavior of boiling reactors. ANL-5849, Argonne National Laboratory

    Google Scholar 

  • Thie JA (1963) Reactor noise. Rowman & Littlefield, New York

    Google Scholar 

  • Thie JA (1977) Neutron noise sources in PWRs. Prog Nucl Energy 1(2–4):283–292

    Article  Google Scholar 

  • Thie JA (1981) Power reactor noise. American Nuclear Society, La Grange Park

    Google Scholar 

  • Uhrig RE (ed) (1966) Proceedings of the symposium on neutron noise, waves and pulse propagation, Gainesville

    Google Scholar 

  • Uhrig RE (1970) Random noise in nuclear reactor systems. Ronald Press, New York

    Google Scholar 

  • van Dam H (1975) A perturbation method for analysis of detector response to parametric fluctuations in reactors. Atomkernenergie 25:70

    Google Scholar 

  • van Dam H (1976) Neutron noise in boiling water reactors. Atomkernenergie 27:8

    Google Scholar 

  • van Dam H (2000) Self-stabilizing criticality waves. Ann Nucl Energy 27(16):1505–1521

    Article  Google Scholar 

  • van der Hagen THJJ, Hoogenboom JE, van Dam H (1992) A multi dimensional multigroup diffusion model for the determination of the frequency-dependent field of view of a neutron detector. Nucl Sci Eng 110:237–253

    Google Scholar 

  • van der Hagen THJJ, Pázsit I, Thomson O, Melkerson B (1994) Methods for the determination of the in-phase and out-of-phase stability characteristics of a boiling water reactor. Nucl Technol 107(2):193–214

    Google Scholar 

  • Verdú G, Ginestar D, Vidal V, Miró R (1998) Modal decomposition method for BWR stability analysis. J Nucl Sci Technol 35(8):538–546

    Google Scholar 

  • Wach D, Kosály G (1974) Investigation of the joint effect of local and global driving sources in in-core neutron noise measurements, Atomkernenergie 23(4):244–250

    Google Scholar 

  • Watson HW, Galton F (1873) Educational Times 19:103

    Google Scholar 

  • Weinberg AM, Schweinler HC (1948) Theory of oscillating absorber in a chain reactor. Phys Rev 74:851–863

    Article  MathSciNet  MATH  Google Scholar 

  • Williams MMR (1974) Random processes in nuclear reactors. Pergamon Press, Oxford

    Google Scholar 

  • Yadigaroglu G, Bergles AE (1972) Fundamental and higher-mode density wave oscillations in two-phase flow. Trans ASME J Heat Transfer 94(2):189–195

    Article  Google Scholar 

  • Yamane Y, Pázsit I (1998) Heuristic derivation of Rossi-alpha formula with delayed neutrons and correlated source. Ann Nucl Energy 25:1373–1382

    Article  Google Scholar 

  • Yamane Y, Takemoto Y, Imai T (1999) Effective delayed neutron fraction measurements in FCA-XIX cores by using modified Bennett method. Prog Nucl Energy 35(2):183–194

    Article  Google Scholar 

  • Yamane Y, Kitamura Y, Kataoka H, Ishitani K, Shiroya S (2002) Application of variance-to-mean method to accelerator-driven subcritical system. In: PHYSOR-2002 international conference on the new frontiers of nuclear technology: reactor physics, safety and high-performance computing, Seoul, October 7–10, 2002

    Google Scholar 

  • Zinzani F, Demazière C, Sunde C (2008) Calculation of the eigenfunctions of the two-group neutron diffusion equation and application to modal decomposition of BWR instabilities. Ann Nucl Energy 35(11):2109–2125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pázsit, I., Demazière, C. (2010). Noise Techniques in Nuclear Systems. In: Cacuci, D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98149-9_14

Download citation

Publish with us

Policies and ethics