Analysis of Reactor Fuel Rod Behavior

  • Paul Van Uffelen
  • Rudy J. M. Konings
  • Carlo Vitanza
  • James Tulenko


The analysis of the behavior of light water reactor (LWR) fuel rods is described. The properties of relevant fuel and cladding materials are discussed and numerical data are given. The basic phenomena taking place in pellet-in-cladding nuclear reactor fuel are described systematically, including neutronic aspect of the fuel, the thermal and mechanical behavior, the fission gas behavior, and radiation effects. Finally typical phenomena and issues in the design and licensing of LWR fuels and their effects on fuel behavior are discussed: the high burnup structure, pellet-cladding interaction, pellet-coolant interaction, loss-of-coolant accidents (LOCA), and reactivity-initiated accidents (RIA).


Fission Product Fission Fragment Fuel Pellet High Burnup Radial Hydride 



The authors wish to thank D. Staicu (Institute for Transuranium Elements) for fruitful discussions, W. Goll (areva np) and Nathalie Dupin (Calcul Thermo) for providing some of the figures and J. van der Laar for help for the preparation of some of the figures.


  1. Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131:1906–1911Google Scholar
  2. Adamson MG, Aitken EA, Caputi RW (1985) Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels. J Nucl Mater 130:349–365Google Scholar
  3. Ainscough JB, Oldfield BW, Ware JO (1973/1974) Isothermal grain growth kinetics in sintered UO2 pellets. J Nucl Mater 49:117–128Google Scholar
  4. Aitken EA, Evans SK (1968) A thermodynamic data program involving plutonium and urania. Tech. Rep. USAEC GEAP-5672, General ElectricGoogle Scholar
  5. Ambegaokar V (1959) Thermal resistance due to isotopes at high temperatures. Phys Rev 114:488–489Google Scholar
  6. Anderson TL (1995) Fracture mechanics – fundamentals and applications, 2nd edn. CRC PressGoogle Scholar
  7. Assmann H (1982) Überblick über zusammenhänge zwischen LWR-brennstoffeigenschaften und verfahrensabläufen bei der Brennstoffproduktion. J Nucl Mater 106:15–34Google Scholar
  8. Assmann H, Stehle H (1978) Thermal and in-reactor densification of UO2: mechanisms and experimental results Nucl Eng Des 48:49–67Google Scholar
  9. Bailly H, Ménessier D, Prunier C (1999) The nuclear fuel of pressurized water reactors and fast neutron reactors. LavoisierGoogle Scholar
  10. Baker L, Just LC (1962) Studies of metal-water reactions at high temperatures; III. Experimental and theoretical studies of the zirconium-water reaction. Tech. Rep. ANL-6548, Argonne National LaboratoryGoogle Scholar
  11. Barner J, Gunningham MD, Freshley DD, Lanning D (1990) Relationship between microstructure and fission gas release in high burnup UO2 fuel with emphasis on the rim region, International Topical Meeting on LWR Fuel Performance, ANS/ENS, 21-24 April 1991, Avignon, France, Proceedings, pp 538–548Google Scholar
  12. Barney W, Wemble B (1958) Metallography of UO2-containing fuel elements. Tech. Rep. KAPL-1836Google Scholar
  13. Baron D (1986) Porosity Buildup in the Fuel Periphery at High Burnup. HBEP steering committee meetingGoogle Scholar
  14. Baron D (1998) A fuel thermal conductivity correlation based on the latest experimental results. In: Proceedings of the seminar on thermal performance of high burn-up LWR fuel. Cadarache, France, pp 129–143Google Scholar
  15. Baron D, Masson R, Gatt J, Spino J, Laux D (2005) Evolution of the nuclear fuel mechanical properties with burn-up. An extensive European experimental program. In: Proceedings of the international topical meeting on LWR fuel performance, Track 2, Paper 1040. Kyoto, JapanGoogle Scholar
  16. Bates JL (1970) Melting point of irradiated uranium dioxide. J Nucl Mater 36:234–236Google Scholar
  17. Beals RJ, Handwerk JH, Wrona BJ (1969) Behavior of urania-rare-earth oxides at high temperatures. J Am Ceram Soc 52:578–581Google Scholar
  18. Beauvy M (1992) Nonideality of the solid solution in (U, Pu)O2 nuclear fuels. J Nucl Mater 188:232–238Google Scholar
  19. Belle J (1961) Uranium dioxide: properties and nuclear applications. Naval reactor handbooks. US Atomic Energy CommissionGoogle Scholar
  20. Berna GA, Beyer CE, Davis KL, Lanning DD (1997) Frapcon-3: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, report NUREG/CR-6534-v2, (PNNL-11513-v2), December 1997Google Scholar
  21. Bernaudat C, Pupier P (2005) A new analytical approach to study the rod ejection accident in PWRs. In: Proceedings of the international topical meeting on light water reactor fuel performance. Kyoto, Japan, pp 602–614Google Scholar
  22. Bibilashvily Y, Medvedev A, Khostov G, Bogatyr S, Korystine L (2000) Development of the fission gas behavior model in the START-3 code and its experimental support. In: Proceedings of the international seminar on fission gas behaviour in water reactor fuels. Cadarache, FranceGoogle Scholar
  23. Billaux M (2005) High burnup fuel for LWRs: fuel performance, limits, operational and safety Issues. The 2005 Frédéric Joliot and Otto Hahn Summerschool. Karlsruhe, GermanyGoogle Scholar
  24. Billone M et al (2008) Cladding embrittlement during postulated loss-of-coolant accidents. Tech. Rep. NUREG /CR-6967Google Scholar
  25. Blank H, Matzke H (1973) The effect of fission spikes on fission gas re-solution. Radiat Eff 17:57–64Google Scholar
  26. Booth AH (1957) A method of calculating fission gas diffusion from UO2 fuel and its application to the x-2-f loop test. Tech. Rep. CRDC-721, AECL, Chalk River, Ontario, CanadaGoogle Scholar
  27. Booth AH (1957) A suggested method for calculating the diffusion of radioactive rare gas fission products from UO2 elements and a discussion of proposed in-reactor experiments that may be used to test its validity. Tech. Rep. DCI-27, AECL, Chalk River, Ontario, CanadaGoogle Scholar
  28. Bossis P, Pêcheur D, Hanifi K, Thomazet J, Blat M (2006) Comparison of the high burn-up corrosion on M5 and low tin Zircaloy-4. ASTM Int 3, DOI:10.1520/JAI12,404Google Scholar
  29. Carbajo JJ, Yoder GL, Popov SG, Ivanov VK (2001) A review of the thermophysical properties of MOX and UO2 fuels. J Nucl Mater 299:181–198Google Scholar
  30. Cathcart JV, Powel RE et al (1977) Zirconium metal-water oxidation kinetics, w. reaction rate studies. Tech. Rep. ORNLINUREG-17, Oak Ridge National LaboratoryGoogle Scholar
  31. Cazalis B, Bernaudat C, Yvon P, Desquines J, Poussard C, Averty X (2005) The PROMETRA program: a reliable material database for highly irradiated Zircaloy-4, ZIRLOTM and M5TM fuel cladding. In: Proceedings of the 18th international conference on structural mechanics in reactor technology (SMiRT 18), no. C02-1 in SMiRTGoogle Scholar
  32. Chadwick MB, Oblozinsky P, Herman M et al (2006) ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107: 2931–3060Google Scholar
  33. Christensen JA (1962) Irradiation effects on uranium dioxide melting Tech. Rep. Report HW-69234, Hanford, CaliforniaGoogle Scholar
  34. Christensen JA, Allio RJ, Biancheria A (1964) Uranium dioxide thermal conductivity. Trans Am Nucl Soc 7:390–391Google Scholar
  35. Chung H (2005) Fuel behavior under loss-of-coolant accident situations. Nucl Eng Technol 37:327–362Google Scholar
  36. Chung H, Kassner T (1998) Cladding metallurgy and fracture behavior during reactivity-initiated accidents at high burnup. Nucl Eng Des 186: 411–427Google Scholar
  37. Cox B (1990) Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding a review. J Nucl Mater 172:249–292Google Scholar
  38. Cozzo C, Staicu D, Pagliosa G, Papaioannou D, Rondinella V, Konings RJM, Walker C, Barker M, Herve PJ (2010) Thermal diffusivity of homogeneous SBR MOX fuel with a burn-up of 35 MWd/kgHM. J Nucl Mater, doi:10.1016/j.jnucmat.2010.03.006Google Scholar
  39. Croff AG, Bjerke MA, Morrison GW, Petrie LM (1978) Revised uranium-plutonium cycle pwr and bwr models for the ORIGEN computer code. Tech. Rep. ORNL/TM-6051, Oak Ridge National LaboratoryGoogle Scholar
  40. Cunningham M, Feshley M, Lanning D (1992) Development and characteristics of the rim region in high burnup UO2 fuel pellets. J Nucl Mater 188:19–27Google Scholar
  41. Cunningham ME, Beyer CE, Medvedev PG, Berna GA, Scott H (2001) Fraptan: a computer code for the transient analysis of oxide fuel rods, NUREG/CR-6739, vol 1, PNNL-13576Google Scholar
  42. Delafoy C, Dewes P, Miles T (2007) AREVA NP Cr2O3-doped fuel development for BWRs. In: Proceedings of the 2007 international LWR fuel performance meeting, Paper 1071. San Francisco, CaliforniaGoogle Scholar
  43. Desquines J, Cazalis B, Bernaudat C, Poussard C, Averty X, Yvon P (2005) Mechanical properties of Zircaloy-4 PWR fuel cladding with burnup 54–64 MWd/kgU and implications for RIA behavior. In: Proceedings of the 14th international symposium on zirconium in the nuclear industry, ASTM STP 1467, pp 851–872Google Scholar
  44. Dupin N, Ansara I, Servant C, Toffolond C, Lemaignanc C, Brachet JC (1999) A thermodynamic database for zirconium alloys. J Nucl Mater 275: 287–295Google Scholar
  45. Duriez C, Alessandri JP, Gervais T, Philipponneau Y (2000) Thermal conductivity of hypostoichiometric low Pu content (U,Pu)O2 − x mixed oxide. J Nucl Mater 277:143–158Google Scholar
  46. Federici E, Lamare F, Bessiron V, Papin J (2001) The SCANAIR code version 3.2: main features and status of qualification. In: Proceedings of the technical committee meeting on fuel behaviour under transient and LOCA conditions, TECDOC-1320. IAEA, pp 88–101Google Scholar
  47. Fink JK (2000) Thermophysical properties of uranium dioxide. J Nucl Mater 279:1–18Google Scholar
  48. Fischer U, Wiese HW (1983) Verbesserte konsistente berechnung des nuklearen inventars abge brannter dwr-brennstoffe auf der basis des zell-abbrand-verfahrens mit korigen. Tech. Rep. KfK-3014, Kernforschungszentrum KarlsruheGoogle Scholar
  49. Forgeron T, Brachet JC, Barcelo F, Castaing A, Hivroz J, Mardon J, Bernaudat C (2000) Experiment and modeling of advanced fuel rod cladding behavior under LOCA conditions: alpha-beta phase transformation kinetics and EDGAR methodology ASTM STP 1354, pp 256–279Google Scholar
  50. Forsberg K, Massih AR (2001) Theory of fission gas release in a growing grain 16th International Conference on Structural Mechanics in Reactor Technology (SMIRT-16), Washington DC, USA, 12–17 August 2001Google Scholar
  51. Fuketa T, Sasajima H, Mori Y, Ishijima K (1997) Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions. J Nucl Mater 248:249–256Google Scholar
  52. Fukushima S, Ohmichi T, Handa M (1986) The effect of rare earths on thermal conductivity of uranium, plutonium and their mived ovide fuels. J Less-Common Met 121:631–639Google Scholar
  53. Garcia P, Struzik C, Agard M, Louche V (2002) Mono-dimensional mechanical modelling of fuel rods under normal and off-normal operating conditions. Nucl Eng Des 216:183–201Google Scholar
  54. Garner N, Rentmeister T, Lippert HJ, Mollard P (2007) Upgraded fuel assemblies for BWRs. In: Proceedings of the 2007 international LWR fuel performance meeting, Paper 1091. San Francisco, CaliforniaGoogle Scholar
  55. Geelhood KJ, Beyer CE, Cunningham ME (2004) Modifications to Fraptran to predict fuel rod failures due to PCMI during RIA-type accidents. In: Proceedings of the 2004 international meeting on LWR fuel performance, Paper 1097. Orlando, Florida, pp 585–595Google Scholar
  56. Gibby RL (1971) The effect of plutonium content on the thermal conductivity of (U, Pu)O2 solid solutions J Nucl Mater 38:163–177Google Scholar
  57. Grimes RW, Catlow CRA (1991) The stability of fission products in uranium dioxide. Phil Trans R Soc London A 335:609–634Google Scholar
  58. Gyori C, Hózer Z, Lassmann K, Schubert A, van de Laar J, Cvan M, Hatala B (2003) In:EU Research in Reactor Safety, Conclusion Symposium on Shared-Cost and Concerted Actions (FISA-2003), Proceedings EUR 21026, Luxembourg, November 10–13, 2003, pp 584–589Google Scholar
  59. Hagrman DL, Reymann GA (1979) MATPRO version 11-A, Handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, 3rd edn. TREENUREC-1280, Advanced Inorganic ChemistryGoogle Scholar
  60. Hanley HJM (1973) The viscosity and thermal conductivity coefficients of dilute argon, krypton, and xenon. J Phys Chem Ref Data 2:619–642Google Scholar
  61. Harbottle JE, Kennard MW, Sunderland DJ, Strasser AA (1994) The behaviour of defective BWR barrier and non-barrier fuel. In: Proceedings of the international topical meeting on LWR fuel performance. West Palm Beach, Florida, April 17–21Google Scholar
  62. Harding J, Martin D (1989) A recommendation for the thermal conductivity of UO2. J Nucl Mater 166:223–226Google Scholar
  63. Haüssinger P, Glatthaar R, Rhode W, Kick H, Benkmann C, Weber J, Wunschel HJ, Stenke V, Leicht E, Stenger H, Groll G (1991) Noble gases. In: Ullmann’s encyclopedia of industrial chemistry. VCH Verlagsgesellschaft AG, Weinheim, pp 485–540Google Scholar
  64. Heins L, Groß H, Nissen K, Wunderlich F (1991) Statistical analysis of QC data and estimation of fuel rod behavior. J Nucl Mater 178:287–295Google Scholar
  65. Hermann A, Yagnik S, Gavillet D (2007) Effect of local hydride accumulations on Zircaloy cladding mechanical properties. In: 15th international symposium on zirconium in the nulcear industry. Sunriver, OregonGoogle Scholar
  66. Hiernaut JP, Hyland GJ, Ronchi C (1993) Premelting transition in uranium dioxide. Int J Thermophys 14:259–283Google Scholar
  67. Higgs JD, Lewis BJ, Thompson WT, He Z (2007) A conceptual model for the fuel oxidation of defective fuel. J Nucl Mater 366:99–128Google Scholar
  68. Hoffmann PB, Dewes P (2004) Post-irradiation examination and ramp testing of fuel rods with Fe-enhanced Zr liner cladding at high burnup. In: Proceedings of the 2004 international meeting on LWR fuel performance, Paper 1059. Orlando, FloridaGoogle Scholar
  69. Hollasky N, Valtonen K, Hache G, Gross H, Bakker K, Recio M, Bart G, Zimmermann M, van Duisboerg W, Killeen J, Meyer R (2000) Fuel safety criteria technical review. Tech. Rep. NEA/CSNI/R(99)25, Nuclear Energy Agency, Committee on the safety of nuclear installationsGoogle Scholar
  70. Hoppe N (1980) Improvements to Comethe III-j fuel rod modelling code. Nucl Eng Des 56:123–133Google Scholar
  71. IAEA (1995) Characteristics and use of urania-gadolinia fuels. Tech. Rep. IAEA-TECDOC-844, International Atomic Energy AgencyGoogle Scholar
  72. IAEA (1997) Thermophysical properties of materials for light water reactors. Tech. Rep. IAEA-TECDOC-949Google Scholar
  73. IAEA (2006) Thermophysical properties database of materials for light water reactors and heavy water reactors. Tech. Rep. IAEA-TECDOC-1496Google Scholar
  74. Ishimoto S, Hirai M, Ito K, Korei Y (1994) Effects of soluble fission products on thermal conductivities of nuclear fuel pellets. J Nucl Sci Technol 31:796–802Google Scholar
  75. Jackson PA, Turnbull JA, White RJ (1990) Enigma fuel performance code. Nucl Energy 29:107–114Google Scholar
  76. Jankus VZ, Weeks RW (1972) LIFE-II — A computer analysis of fast-reactor fuel-element behavior as a function of reactor operating history. Nucl Eng Des 18:83–96Google Scholar
  77. Jerlerud Pérez R, Massih AR (2007) Thermodynamic evaluation of the Nb-O-Zr system. J Nucl Mater 360:242–254Google Scholar
  78. Jernkvist L (2006) Computational assessment of burnup-dependent fuel failure thresholds for reactivity initiated accidents. J Nucl Sci Technol 43:546–561Google Scholar
  79. Kaji Y, Tsuru T (2008) Investigation of model for stress corrosion cracking of cladding materials. In: Proceedings of the 7th international workshop materials modelling and simulations or nuclear fuel MMSNF 7, EUR 23556 EN. Karlsruhe, GermanyGoogle Scholar
  80. Kamemaya T, Matsumura T, Kinoshita M (1994) Numerical analysis for microstructure change of a light water reactor fuel pellet at high burnup. Nucl Technol 106:334–341Google Scholar
  81. Kang KW, Yang JH, Kim JH, Rhee YW, Kim DJ, Kim KS, Song KW (2007) The solidus and liquidus temperatures of UO2-Gd2O3 and UO2-Er2O3 fuels. Thermochim Acta 455:134–137Google Scholar
  82. Karlsson J, Lysell G, Pettersson H, Rönnberg G (2004) In-pile testing of liner-cladding and pellet performance in failed fuel rods. In: Proceedings of the international topical meeting on LWR fuel performance, Paper 1046. Orlando, FloridaGoogle Scholar
  83. Kato M, Morimoto K, Sugata H, Konashi K, Kashimura M, Abe T (2008) Solidus and liquidus temperatures in the UO2-PuO2 system. J Nucl Mater 373:237–245Google Scholar
  84. Killeen J, Turnbull J, Sartori E (2007) Fuel modelling at extended burnup: IAEA coordinated research project FUMEX-II. In: Proceedings of the 2007 international LWR fuel performance meeting, paper 1102. San Francisco, California, pp 261–273Google Scholar
  85. Kinoshita M, Sonoda T, Kitajima S, Kolstad E, Matzke H, Rondinella V, Stalios A, Walker C, Ray I, Sheindlin M, Halton D, Ronchi C (2000) High burn-up rim project, (ii) irradiation and examination to investigate rim-structured fuel. In: Proceedings of the international topical meeting on LWR fuel performance. Park City, UtahGoogle Scholar
  86. Kogai T (1997) Modelling of fission gas release and gaseous swelling of light water reactor fuels. J Nucl Mater 244:131–140Google Scholar
  87. Koo YH, Sohn DS, Volkov B (1997) A comparative analysis of UO2 and MOX fuel behaviour under reactivity initiated accident conditions. Ann Nucl Energy 24:859–870Google Scholar
  88. Koo YH, Sohn DS, Yoon YK (1994) An analysis method for the fuel rod gap inventory of unstable fission products during steady-state operation. J Nucl Mater 209:62–78Google Scholar
  89. Kreyns P, Spahr G, McCauley J (1976) An analysis of iodine stress corrosion cracking of Zircaloy-4 tubing. J Nucl Mater 61:203–212Google Scholar
  90. Kurchatov SY, Likhanskii VV, Sorokin AA, Khoruzhii OV (2002) RTOP-code simulation of the radial distribution of heat release and plutonium isotope accumulation in high burnup oxide fuel. Atom Energy 92:349–356Google Scholar
  91. Kuroda M, Yamanaka S, Nagase F, Uetsuka H (2001) Analysis of the fracture behavior of hydrided fuel cladding by fracture mechanics. Nucl Eng Des 203:185–194Google Scholar
  92. Lassmann K (1980) The structure of fuel element codes. Nucl Eng Des 57:17–39Google Scholar
  93. Lassmann K (1992) TRANSURANUS: a fuel rod analysis code ready for use. J Nucl Mater 188:295–302Google Scholar
  94. Lassmann K, Benk H (2000) Numerical algorithms for intragranular fission gas release. J Nucl Mater 280: 127–135Google Scholar
  95. Lassmann K, Hohlefeld F (1987) The revised URGAP model to describe the gap conductance between fuel and cladding. Nucl Eng Des 103:215–221Google Scholar
  96. Lassmann K, O’Carroll C, van de Laar J, Walker CT (1994) The radial distribution of plutonium in high burnup UO2 fuels. J Nucl Mater 208:223–231Google Scholar
  97. Lassmann K, Schubert A, van de Laar J, Vennix C (2000) Recent developments of the TRANSURANUS code with emphasis on high burnup phenomena. In: Proceedings of the IAEA technical committee meeting on nuclear fuel behaviour modelling at high burnup, IAEA-TECDOC-1233. Windermere, UK, pp 387–406Google Scholar
  98. Lassmann K, Schubert A, Van Uffelen P, van de Laar J (2005) TRANSURANUS Handbook v1m1j09 (2009), European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, GermanyGoogle Scholar
  99. Lassmann K, Van Uffelen P (2004) The structure of fuel rod codes. Tech. Rep. EUR 21400 EN, JRC Publications, European CommissionGoogle Scholar
  100. Lassmann K, Walker CT, van de Laar J (1998) Extension of the TRANSURANUS burnup model to heavy water reactor conditions. J Nucl Mater 255: 222–233Google Scholar
  101. Le Saux M (2008) Comportement et rupture de gaines en Zircaloy-4 d’etendu vierges, hydrurées ou irradiées en situation accidentelle de type RIA. Ph.D. thesis, Ecole National Superieure des Mines, MINES Paris TechGoogle Scholar
  102. Le Saux M, Besson J, Carassour S, Poussard C, Averty X (2008) A model to describe the anisotropic viscoplastic mechanical behviour of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditions. J Nucl Mater 378:60–69Google Scholar
  103. Leclercq S, Parrot A, Leroy M (2008) Failure characteristics of cladding tubes under RIA conditions. Nucl Eng Des 238: 2206–2218Google Scholar
  104. Lee BH, Koo YH, Oh JY, Cheon JS, Sohn DS (2007) Improvement of fuel performance code COSMOS with recent in-pile data for MOX and UO2. Fuels Nucl Technol 157:53–64Google Scholar
  105. Lee CB, Kim BG, Song JS, Bang JG, Jung YH (2000) RAPID model to predict radial burnup distribution in LWR UO2 fuel. J Nucl Mater 282:196–204Google Scholar
  106. Lemehov S, Nakamura J, Suzuki M (2001) PLUTON: A three-group model for the radial distribution of plutonium, burnup, and power profiles in highly irradiated LWR fuel rods. Nucl Technol 133:153–168Google Scholar
  107. Lewis BJ, Thompson WT, Akbari F, Thompson DM, Thurgood C, Higgs J (2004) Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel. J Nucl Mater 328:180–196Google Scholar
  108. Link T, Koss D, Motta A (1998) Failure of Zircaloy cladding under transverse plane-strain deformation. Nucl Eng Des 186:379–394Google Scholar
  109. Lösönen P (2000) On the behaviour of intragranular fission gas in UO2 fuel. J Nucl Mater 280:56–72Google Scholar
  110. Lyon WL, Bailey WE (1967) The solid-liquid phase diagram for the UO2-PuO2 system. J Nucl Mater 22:332–339Google Scholar
  111. MacDonald P, Seiffert S, Martinson Z, McCardell R, Owen D, Fukuda S (1980) Assessment of light-water-reactor fuel damage during a reactivity-initiated-accident. Nucl Safety 21:582–602Google Scholar
  112. Manzel R, Walker CT (2002) EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100 MWd/kgHM. J Nucl Mater 301:170–182Google Scholar
  113. Marchal N, Campos C, Garnier C (2009) Finite element simulation of pellet-cladding interaction PCI. Comput Mat Sci 821–826Google Scholar
  114. Martin DG (1988) The thermal expansion of solid UO2 and (U, Pu) mixed oxides - a review and recommendations. J Nucl Mater 152:94–101Google Scholar
  115. MATPRO (1981) Version 11 (Revision 2), A handbook of material properties for use in the analysis of light water reactor fuel rod behaviourGoogle Scholar
  116. MATPRO (1990) Report NUREG/CR-5273, EGG-2555Google Scholar
  117. MATPRO (1993) NUREG/CR-6150, EGG-2720, SCDAP/RELAP5/MOD3.1 Code Manual volume IV. In: Hagrman DT (ed) MATPRO – A library of materials properties for Light-Water Reactor accident analysis. November 1993, Idaho National Engineering LaboratoryGoogle Scholar
  118. Mattas R, Yaggee F, Neimark L (1979) Iodine stress-corrosion cracking in irradiated Zircaloy cladding. In: Proceedings topical meeting LWR fuel. Portland, OregonGoogle Scholar
  119. Mattys HM (1968) Plutonium oxide as nuclear fuel. Actinides Rev 1:165–182Google Scholar
  120. Matzke H (1980) Gas release mechanisms in UO2—a critical review Radiat Eff 53:219–242Google Scholar
  121. Meyer R, McCardell R, Chung H, Diamond H, Scott H (1996) A regulatory assessment of test data for reactivity initiated accidents. Nucl Safety 37:271–288Google Scholar
  122. Michel B, Sercombe J, Nonon C, Fandeur O (2010) Modelling of pellet cladding interaction. In: Konings RJM, Allen TR, Stoller RE, Yamanaka S (eds) Comprehensive Nuclear Materials. Elsevier, OxfordGoogle Scholar
  123. Michel B, Sercombe J, Thouvenin G (2008) A new phenomenological criterion for pellet cladding interaction. Nucl Eng Des 238:1612–1628Google Scholar
  124. Miller A, Ocken H, Tasooji A (1981) Iodine stress corrision cracking of Zircaloy: laboratory data, a phenomenological mode, and predictions of in-reactor behavior. J Nucl Mater 254–268Google Scholar
  125. Misfeldt I (1977) A stress corrosion failure model. In: Proceedings of IAEA specialists’ meeting on fuel element performance computer modelling blackpool. Report SRE-14–77. Risoe National LaboratoryGoogle Scholar
  126. Mogensen M, Pearce J, Walker C (1999) Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from XRF investigation. J Nucl Mater 264:99–112Google Scholar
  127. Musienko A, Cailletaud G (2009) Simulation of inter- and intragranular crack propagation in polycrystlline aggregates due to stress corrosion cracking. Acta Mater 57:3840–3855Google Scholar
  128. Nagase F, Fuketa T (2004) Effects of pre-hydriding on thermal resistance of Zirealoy-4 cladding under simulated loss-of-coolant accident conditions. J Nucl Sci Tech 41(7):723–730Google Scholar
  129. Newton TD, Hutton JL (2002) The next generation WIMS lattice code: WIMS9 In: PHYSOR 2002 – international conference on the new frontiers of nuclear technology: reactor physics, safety and high-performance computing, 14A-04, American Nuclear Society, Seoul, Korea, October 7–10, 2002, ISBN 0-89448-672-1Google Scholar
  130. Nichols AL, Aldama DL, Verpelli M (2008) Handbook of nuclear data for safeguards. Tech. Rep. INDC(NDS)-0502, IAEA – International Nuclear Data Committee, ViennaGoogle Scholar
  131. Noirot L (2005) MARGARET: an advanced mechanistic model of fission gas behavior in nuclear fuel. In: International topical meeting on light water reactor fuel performance. ANS, Kyoto, Japan, October 2–5, 2005. OECD paper No. 1067Google Scholar
  132. Nonon C, Menard J, Lansiart S, Noirot J, Martin S, Decroix G, Rabouille O, Delafoy C, Petitprez B (2004) PCI behaviour of chromium oxide doped fuel. In: Proceedings of the international seminar on pellet-clad interaction in water reactor fuels. OECD-NEA, Aix-en Provence, FranceGoogle Scholar
  133. Oguma M (1983) Cracking and relocation behavior of nuclear fuel pellets during rise to power. Nucl Eng Des 76:35–45Google Scholar
  134. Olander D (1976) Fundamental aspects of nuclear reactor fuel elements. Tech. Rep. TID-26711-P1, Technical Information Center, Office of Public Affairs Energy Research and Development AdministrationGoogle Scholar
  135. Olander DR, Kim YS, Wang WE, Yagnik SK (1999) Steam oxidation of fuel in defective LWR rods. J Nucl Mater 270:11–20Google Scholar
  136. Olander DR, Mubayi V (1999) Review of the materials-chemistry models in the VICTORIA code. J Nucl Mater 270:1–10Google Scholar
  137. Olander DR, Uffelen PV (2001) On the role of grain boundary diffusion in fission gas release. J Nucl Mater 288:137–147Google Scholar
  138. Palmer ID, Hesketh KW, Jackson PA (1983) Water reactor fuel element performance computer modelling. Applied Science Barking, UK, p 321Google Scholar
  139. Park S, Kim J, Lee MH, Jeon YH (2008) Stress-corrosion crack initiation and propagation behavior of Zircaloy-4 cladding under iodine environment. J Nucl Mater 372:293–303Google Scholar
  140. Peck SO (1980) Automated uncertainty analysis methods in the FRAP computer codes, IAEA Specialist’s Meeting on Fuel Element Performance Computer Modeling, Blackpool, UK, March 17–21, 1980, pp 260–266, IAEA Summary report IWGFPT/7Google Scholar
  141. Powers DA (2000) Technical issues associated with air ingress during core degradation. Tech. Rep. SAND2000, 1935C, SANDIA National LaboratoryGoogle Scholar
  142. Rashid J, Montgomery R, Lyon W, Yang R (2001)A cladding failure model for fuel rods subjected to operational transients and accident transients. In: Nuclear fuel behaviour modeling at high burnup and its experimental support. Proceedings of a Technical Committee meeting, June 19–23, 2000. Windermere, UK, IAEA-TECDOC-1233. IAEA, pp 187–199Google Scholar
  143. Rest J, Zawadski SA (1992) Fastgrass: a mechanistic model for the prediction of xe, i, cs, te, ba and sr release from nuclear fuel under normal and sever-accident conditions. Tech. Rep. NUREG/CR-5840, ANL-92/3, Argonne National LaboratoryGoogle Scholar
  144. Ronchi C, Elton PT (1986) Radiation re-solution of fission gas in uranium dioxide and carbide. J Nucl Mater 140:228–244Google Scholar
  145. Ronchi C, Sheindlin M, Staicu D, Kinoshita M (2004) Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t − 1. J Nucl Mater 327:58–76Google Scholar
  146. Ronchi C, Shiendlin M, Musella M, Hyland GJ (1999) Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity. J Appl Phys 85:776–789Google Scholar
  147. Ross AM, Stoute RL (1962) Heat transfer coefficient between UO2 and Zircaloy-2. Tech. Rep. AECL-1552, AECLGoogle Scholar
  148. Rousselier G, Leclercq S, Diard O (2003) Scenario for the damage of PWR fuel cladding in situations of pellet-cladding interaction. In: Transactions of the 17th international conference on structural mechanics in reactor technology (SMiRT 17). Prague, Czech Republic, pp C03–3Google Scholar
  149. Sartori E, Killeen J, Turnbull J (2007) Interna-tional fuel performance experiments (IFPE) database (January 2010). 2009.
  150. Sasajima H, Fuketa T, Nakamura T, Nakamura J, Kikuchi K (2000) Behavior of irradiated atr/mox fuel under reactivity initiated accident conditions. J Nucl Sci Technol 37:455Google Scholar
  151. Schire D, Grapengiesser B, Hallstadius L, Lundholm L, Lysell G, Frenning G, Ronnberg G, Jonsson A (1994) Secondary defect behaviour in sc abb bwr fuel. In: Proceedngs international topical meeting on LWR fuel performance. West Palm Beach, Florida, pp 398–409Google Scholar
  152. Schmidt HE (1970) Commission of the European Communities. European Institute for Transuranium Elements, Karlsruhe, Tech. Rep. Progress Report No. 9, July-December 1969, No. 2576, p. 29Google Scholar
  153. Schmidt HE (1971) Die Warmeleitfahigkeit von Uran- und Uran-Plutonium dioxyd. High Temp-High Press 3:345–353Google Scholar
  154. Schubert A, Van Uffelen P, van de Laar J, Walker CT, Haeck W (2008) Extension of the TRANSURANUS burn-up model. J Nucl Mater 376:1–10Google Scholar
  155. Schuster I, Lemaignan C (1992) Influence of texture on iodine-induced stress corrosion cracking of Zircaloy-4 cladding tubes. J Nucl Mater 189:157–166Google Scholar
  156. Shimada S, Etoh E, Hayashi H, Tukuta Y (2004) A metallographic and fractographic study of outside-in cracking caused by power ramp tests. J Nucl Mater 327:97–113Google Scholar
  157. Sihver L, Hallstadius L, Wikmark G (1997) Recent ABB BWR failure experience. In: Proceedings international topical meeting on LWR fuel performance. Portland, Oregon, pp. 356–364Google Scholar
  158. Solyany VI, Bibilashvily YK, Tonkov VY (1983) In: Proceeding OECD-NEA-CSNI/IAEA Specialists meeting on water reactor fuel safety and fission product release in off-normal and accident conditions, May 16–20, 1983. Risoe, Denmark, p 163Google Scholar
  159. Sonoda T, Kinoshita M, Ray I, Wiss T, Thiele H, Pellottiero D, Matzke H (2002) Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burnup UO2 disk fuel. Nucl Instr Methods Phys Res B191:622–628Google Scholar
  160. Sonoda T, Matzke H, Kinoshita M (1999) High burnup rim project: (iv) threshold burnup of rim structure formation. In: Project OHR (ed) Proceedings of the enlarged Halden program group meeting. Loen, NorwayGoogle Scholar
  161. Sontheimer F, Landskron H, Billaux M (1998) A fuel thermal conductivity correlation based on the latest experimental results. In: Proceedings of the seminar on thermal performance of high burn-up LWR fuel. Cadarache, France, p 119Google Scholar
  162. Speight MV (1969) A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation. Nucl Sci Eng 37:180–185Google Scholar
  163. Spino J, Stalios A, Santa Cruz H, Baron D (2006) Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation. J Nucl Mater 354:66–84Google Scholar
  164. Stan, M. (2009) Discovery and Design of Nuclear Fuels. Materials Today 12, 36-44.Google Scholar
  165. Stammler JJ, Boerresen S, Casal JJ, Forslund P (1996) Helios - Verification against Kritz and other critical experiments. In: PHYSOR 1996 – international conference on physics of reactors, September 16–20, 1996, American Nuclear Society, Mito, Ibaraki, JapanGoogle Scholar
  166. Suk HC, Wang W, Kim BG, Kim KS, Heo YH (1992) In: Technical committee meeting on fission gas release and fuel chemistry related to extended burnup, April 1992, Pembroke, Ontario, Canada, pp 193–201Google Scholar
  167. Suzuki M (2000) Analysis of high burnup fuel behavior in Halden reactor by FEMAXI-V code. Nucl Eng Des 201:99–106Google Scholar
  168. Suzuki M (2000) Light water reactor fuel analysis code Femaxi-v (ver.1)Google Scholar
  169. Trkov A, Molnár GL, Révay Z, Mughabghab SF, Firestone RB, Pronyaev V, Nichols AL, Moxon MC (2005) Revisiting the 238U thermal capture cross section and gamma-ray emission probabilities from 239Np Decay. Nucl Sci Eng 150:336–348Google Scholar
  170. Tsederberg NV, Popov VN, Morozova NA (1971) Thermodyanmic and thermophysical properties of Helium. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  171. Turnbull JA (1980) A review of irradiation induced re-solution in oxide fuels. Rad Effects 53:243–250Google Scholar
  172. Turnbull JA, Friskney C, Findlay J, Johnson F, Walter AJ (1982) The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide. J Nucl Mater 107:168– 184Google Scholar
  173. Uetsuka H, Furuta T, Kawasaki S (1983) failure-bearing capability of oxidized zircaloy-4 cladding under simulated loss-of-coolant Condition J Nucl Sci Techn 20:941–950Google Scholar
  174. Une K, Amaya M, Imamura M, Korei Y (1995) Fission gas release from defective BWR fuels. J Nucl Mater 226:323–326Google Scholar
  175. Une K, Imamura M, Amaya M, Korei Y (1995) Fuel oxidation and irradiation behaviors of defective BWR fuel rods. J Nucl Mater 223:40–50Google Scholar
  176. Urbanic VF, Heidrick TR (1978) High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam. J Nucl Mater 75:251–261Google Scholar
  177. US-NRC (1981) Standard review plan for the review of safety analysis reports for nuclear power plants, LWR edition.Google Scholar
  178. van der Linde A (1965) Calculation of the safe life time expectancy of zirconium alloy canning in the fuel Tech. Rep. RCN-41, Reactor Centrum NederlandGoogle Scholar
  179. Van Swam L, Strasser A, Cook J, Burger J (1997) Behaviour of Zircaloy-4 and zirconium liner Zircaloy-4 cladding at high burnup. In: Proceedings international topical meeting on LWR fuel performance. Portland, Oregon, pp 421–431Google Scholar
  180. Van Uffelen P (2002) Contribution to the modelling of fission gas release in light water reactor fuel. Ph.D. thesis, University of Liege, Nuclear EngineeringGoogle Scholar
  181. Van Uffelen P, Gyori C, Schubert A, van de Laar J, Hózer Z, Spykman G (2008) Extending the application range of a fuel performance code from normal operating to design basis accident conditions. J Nucl Mater 383:137-143Google Scholar
  182. Van Uffelen P, Jonnet J, Ronchi C (2004) Open questions related to the high burnup structure in nuclear fuels. In: Proceedings of the workshop on materials modelling and simulations for nuclear fuels. Washington, DCGoogle Scholar
  183. Van Uffelen P, Sheindlin M, Rondinella V, Ronchi C (2004) On the relations between the fission gas behaviour and the pellet-cladding mechanical interaction in LSR fuel rods In: Seminar on Pellet-clad interaction in water reactor fuels (PCI-2004), CEA Cadarache/DEN/DEC, Aix en Provence, France, March 9–11 2004, OECD, Paper 14Google Scholar
  184. Vitanza C (2006) RIA failure threshold and LOCA limit at high burn-up. J Nucl Sci Technol 43:1074–1079Google Scholar
  185. Vitanza C (2007) A review and interpretation of RIA experiments. Nucl Eng Technol 39:591–602Google Scholar
  186. Vitanza C, Conde Lopez JM (2005) PCMI implicatons for high burn-up light water reactor fuel in reactivity-initiated accidents. In: Seminar on pellet-clad interaction in water reactor fuels (PCI-2004) Aix-en-Provence, March 9–11, 2004, OECD, Paper 5Google Scholar
  187. Vitanza C, Graziani U, Fordestrommen NT, Vilpponen KO (1978) Fission gas release from in-pile measurements. Tech. Rep. HPR-221.10, OECD Halden Reactor ProjectGoogle Scholar
  188. Volkov BY, Viktorov VF, Platonov PA, Rjazantzeva A (1989) Library of subprograms on physical and mechanical properties of the n1-alloy fuel rod cladding material. Tech. Rep. KIAE-4941/11, Institute of Atomic Energy I.V. KurchatovGoogle Scholar
  189. Walker C, Kamemaya T, Kitajama S, Kinoshita M (1992) Concerning the microstructure changes that occur at the surface of UO2 pellets on irradiation to high burnup. J Nucl Mater 188: 73–79Google Scholar
  190. Walker CT, Bremier S, Portier S, Hasnaoui R, Goll W (2009) SIMS analysis of an UO2 fuel irradiatedat low temperature to 65 MWd/kgHM. J Nucl Mater 393:212–223Google Scholar
  191. Walker CT, Staicu D, Sheindlin M, Papaioannou D, Goll W, Sontheimer F (2006) On the thermal conductivity of UO2 nuclear fuel at burnup of around 100 MWd/kgHM. J Nucl Mater 350:19–39Google Scholar
  192. White RJ (2004) The development of grain-face porosity in irradiated oxide fuel. J Nucl Mater 325:61–77Google Scholar
  193. White RJ, Tucker MO (1983) A new fission-gas release model. J Nucl Mater 118: 1–38Google Scholar
  194. Wiesenack W (1997) In: Proceedings of the international topical meeting on light water reactor fuel performance, March 2–6, 1997, Portland, Oregon. Assessment of UO2 conductivity degradation based on in-pile temperature dataGoogle Scholar
  195. Wood J (1972) Factors affecting stress corrosion cracking of Zircaloy in iodine vapour. J Nucl Mater 45:105–122Google Scholar
  196. Xin X, Lai W, Liu B (2009) Point defect properties in hcp and bcc Zr with trace solute Nb revealed by ab initio calculations. J Nucl Mater 393: 197–202Google Scholar
  197. Yamanouchi S, Tachibana T, Tsukui K, Oguma M (1988) Melting Temperature of Irradiated UO2 and UO2-2wt%Gd2O3 Fuel Pellets up to Burnup of about 30 GWd/tU. J Nucl Sci Techol 25:528–533Google Scholar
  198. Yamnikov VM, Malanchenko LL (1977) Variation of thermal conductivity of a gas mixture under the fuel-element jacket during burn-up. Atomic Energy 42:358–360Google Scholar
  199. Zhou G, Lindbåck JE, Schutte HC, Jernkvist LO, Massih AR (2005) Modelling pellet clad interaction during power ramps,. In: Proceedings international seminar on pellet-clad interaction in water reactor fuels. OECD-NEA, Aix-en Provence, FranceGoogle Scholar
  200. Zimmerer W (1978) Darstellung der neu integrierten stoffdaten-funktionen im system maplib in tabellarischer und graphischer form. Tech. Rep. KfK-Ext.8/78-3, Kernforschungszentrum KarlsruheGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul Van Uffelen
    • 1
  • Rudy J. M. Konings
    • 2
  • Carlo Vitanza
    • 3
  • James Tulenko
    • 4
  1. 1.European CommissionJoint Research Centre, Institute for Transuranium ElementsKarlsruheGermany
  2. 2.European CommissionJoint Research Centre, Institute for Transuranium ElementsKarlsruheGermany
  3. 3.OECD Halden Reactor ProjectHaldenNorway
  4. 4.202 Nuclear Science CenterUniversity of FloridaGainesvilleUSA

Personalised recommendations