Neutron Cross Section Measurements

  • Robert C. Block
  • Yaron Danon
  • Frank Gunsing
  • Robert C. Haight
Reference work entry


This chapter gives an overview of neutron-induced cross section measurements, both past and present. A selection of the principal characteristics of time-of-flight and monoenergetic fast neutron facilities is given together with several examples of measurements. The physics of typical neutron cross sections and their measurements are explained in detail. Finally an overview of the R-matrix formalism, which is at the basis of resonance reactions, is given. The many references provide a starting point for the interested reader.


Total Cross Section Neutron Source Neutron Energy Neutron Capture Reaction Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbondanno U et al (2003) CERN n_TOF facility: performance report. Tech. Rep. ERNSL-2002-053 ECTGoogle Scholar
  2. Abbondanno U et al (2004) New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl Instrum Methods Phys Res Sect A 521(2–3):454–467CrossRefGoogle Scholar
  3. Abbondanno U et al (2005) The data acquisition system of the neutron time-of-fight facility n_TOF at CERN. Nucl Instrum Methods Phys Res Sect A 538(1–3):692CrossRefGoogle Scholar
  4. Abfalterer WP, Finlay RW, Grimes SM (2000) Level widths and level densities of nuclei in the 32 ≤ A ≤ 60 mass region inferred from fluctuation analysis of total neutron cross sections. Phys Rev C 62(6):064312CrossRefGoogle Scholar
  5. Abramowitz M (1965) Handbook of mathematical functions with formulas, graphs, and mathematical table. Dover Publications, New YorkGoogle Scholar
  6. Adler DB, Adler FT (1972) Uniqueness of R-matrix parameters in the analysis of low-energy neutron cross sections of fissile nuclei. Phys Rev C 6:986–1001CrossRefGoogle Scholar
  7. Ait-Tahar S, Hodgson PE (1987) Weisskopf-Ewing calculations – neutron-induced reactions. J Phys G 13(7):945–956CrossRefGoogle Scholar
  8. Allmond JM, Bernstein LA, Beausang CW et al (2009) Relative U-235(n,gamma) and (n,f) cross sections from U-235(d,p gamma) and (d,pf). Phys Rev C 79(5):054610CrossRefGoogle Scholar
  9. Amaldi E, Fermi E (1936) On the absorption and the diffusion of slow neutrons. Phys Rev 50: 899CrossRefGoogle Scholar
  10. Ananiev VD et al (2005) Intense resonance neutron source (IREN) – new pulsed source for nuclear physical and applied investigations. Phys Elementary Part At Nuclei (PEPAN) 126: 11–18Google Scholar
  11. Asami A (1973) JAERI new linac. J At Energy Soc Jpn 15:37–42CrossRefGoogle Scholar
  12. Baba M (2005) Experimental studies on particle and radionuclide production cross sections for tens of MeV neutrons and protons. AIP 769:884–889Google Scholar
  13. Baba M, Ibaraki M, Miura T et al (2002) Experiments on neutron scattering and fission neutron spectra. J Nucl Sci Technol 1(suppl. 2):204–209Google Scholar
  14. Barry DP (2003) Neodymium neutron transmission and capture measurements and development of a new transmission detector. PhD thesis, Rensselaer Polytechnic InstituteGoogle Scholar
  15. Bauge E, Delaroche JP, Giro M (2001) Lane-consistent, semimicroscopic nucleon-nucleus optical model. Phys Rev C 63:024607CrossRefGoogle Scholar
  16. Beer H, Kappeler F (1979) Capture-to-fission ratio of U-235 in the neutron energy-range from 10 to 500 keV. Phys Rev C 20(1):201–211CrossRefGoogle Scholar
  17. Beer H, Kappeler F (1980) Neutron-capture cross-sections on Ba-138, Ce-140, Ce-142, Lu-175, Lu-176, and Ta-181 at 30 keV – prerequisite for investigation of the Lu-176 cosmic clock. Phys Rev C 21(2):534–544CrossRefGoogle Scholar
  18. Behrens JW, Browne JC, Ables E (1982) Measurement of the neutron-induced fission cross-section of Th-232 relative to U-235 from 0.7 to 30 MeV. Nucl Sci Eng 81(4):512–519Google Scholar
  19. Belikov OV et al (2010) Physical start-up of the first stage of IREN facility. J Phys Conference Series 205:012053CrossRefGoogle Scholar
  20. Bernstein LA et al (2002) Pu-239(n,2n) Pu-238 cross section deduced using a combination of experiment and theory. Phys Rev C 65(2): 021601CrossRefGoogle Scholar
  21. Biro T, Sudar S, Miligy, Z, Dezso Z, and Csikai, J (1975) Investigations of (n,t) cross sections at 14.7 MeV. J Inorg Nucl Chem 37(7–8):1583–1585.CrossRefGoogle Scholar
  22. Blatt JM, Biedenharn LC (1952) The angular distribution of scattering and reaction cross sections. Rev Mod Phys 24(4):258–272MATHCrossRefGoogle Scholar
  23. Block RC, Marano PJ, Drindak NJ et al (1988) A multiplicity detector for accurate low-energy neutron capture measurements. In: Proceedings of the international conference on nuclear data for science and technology, Mito, p 383Google Scholar
  24. Blons J (1973) High-resolution measurements of neutron-induced fission cross-sections for U-233 U-235 Pu-239 and Pu-241 below 30 keV. Nucl Sci Eng 51(2):130–147Google Scholar
  25. Bohigas O, Giannoni MJ, Schmit C (1984) Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys Rev Lett 52: 1–4MathSciNetMATHCrossRefGoogle Scholar
  26. Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344Google Scholar
  27. Borcea C et al (2003) Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl Instrum Methods Phys Res Sect A 51:524–537CrossRefGoogle Scholar
  28. Borella A, Aerts G, Gunsing F et al (2007a) The use of C6D6 detectors for neutron induced capture cross-section measurements in the resonance region. Nucl Instrum Methods Phys Res Sect A 577(3):626–640CrossRefGoogle Scholar
  29. Borella A, Gunsing F, Moxon M et al (2007b) High-resolution neutron transmission and capture measurements of the nucleus Pb-206. Phys Rev C 76(1):014605CrossRefGoogle Scholar
  30. Boyer S, Dassie D, Wilson JN et al (2006) Determination of the 233Pa(n,gamma) capture cross section up to neutron energies of 1 MeV using the transfer reaction 232Th(3He,p)234Pa. Nucl Phys A 775(3–4):175–187CrossRefGoogle Scholar
  31. Breit G, Wigner EP (1936) Capture of slow neutrons. Phys Rev 49(7):519–581MATHCrossRefGoogle Scholar
  32. Burke JT, Bernstein LA, Scielzo ND et al (2008) Surrogate Reactions in the Actinide Region, AIP Conference Proceedings 1005:96–100CrossRefGoogle Scholar
  33. Calviani M, Cennini P, Karadimos D et al (2008) A fast ionization chamber for fission cross-section measurements at n_TOF. Nucl Instrum Methods Phys Res Sect A 594(2):220–227CrossRefGoogle Scholar
  34. Calviani M, Praena J, Abbondanno U et al (2009) High-accuracy 233U(n,f) cross-section measurement at the white-neutron source n_TOF from near-thermal to 1 MeV neutron energy. Phys Rev C 80(4):044604CrossRefGoogle Scholar
  35. Camarda HS, Dietrich FS, Phillips TW (1989) Microscopic optical-model calculations of neutron total cross-sections and cross-section differences. Phys Rev C 39(5):1725–1729CrossRefGoogle Scholar
  36. Capote R, Soukhovitskii ES, Quesada JM et al (2005) Is a global coupled-channel dispersive optical model potential for actinides feasible? Phys Rev C 72(6):064610CrossRefGoogle Scholar
  37. Carlson AD, Behrens JW (1983) Measurement of the 235U(n,f) cross section from 0.3 to 3.0 MeV using the NBS electron linac, Proceedings of the International Conference on Nuclear Data for Science and Technology, 6–10 Sept. 1982, Antwerp, Belgium, ed. K. H. Bockhoff, (Dordrecht, Netherlands; Reidel, 1983) pp. 456–459Google Scholar
  38. Carlson AD et al (2009) International evaluation of neutron cross section standards. Nucl Data Sheets 110(12):3215–3324CrossRefGoogle Scholar
  39. Chadwick J (1932) Possible existence of a neutron. Nature 129:312Google Scholar
  40. Chadwick MB et al (2006). ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. ENDF data can be accessed at the National Nuclear Data Center at Brookhaven National Laboratory []. Nucl Data Sheets 107(12):2931–3059
  41. Cierjacks S, Duelli B, Forti P et al (1968) Fast neutron time-of-fight spectrometer used with the karlsruhe isochronous cyclotron. Rev Sci Instrum 39(9):1279–1288CrossRefGoogle Scholar
  42. Cramer JD, Britt HC (1970) Neutron fission cross sections for Th-231, Th-233, U-235, U-237, U-239, Pu-241, and Pu-243 from 0.5 to 2.25 MeV using (t, pf) reactions. Nucl Sci Eng 41(2):177Google Scholar
  43. Dabbs JWT (1979) Neutron cross section measurements at ORELA. In: Nuclear cross sections for technology proceedings of the international conference on nuclear cross sections for technology, Knoxville, p 929Google Scholar
  44. Dagan R (2008) On the angular distribution of the ideal gas scattering kernel. Ann Nucl Energy 35:1109–1116CrossRefGoogle Scholar
  45. Danon Y, Slovacek RE, Block RC et al (1991) Fission cross-section measurements of Cm-247, Es-254, and Cf-250 from 0.1 eV to 80 keV. Nucl Sci Eng 109(4):341–349Google Scholar
  46. Danon Y, Block RC, Slovacek RE (1995) Design and construction of a thermal-neutron target for the RPI linac. Nucl Instrum Methods Phys Res Sect A 352(3):596–603CrossRefGoogle Scholar
  47. Danon Y, Werner CJ, Youk G et al (1998) Neutron total cross-section measurements and resonance parameter analysis of holmium, thulium, and erbium from 0.001 to 20 eV. Nucl Sci Eng 128(1):61–69Google Scholar
  48. Danon Y, Block RC, Rapp MJ et al (2009a) Beryllium and graphite high-accuracy total cross-section measurements in the energy range from 24 to 900 keV. Nucl Sci Eng 161(3):321–330Google Scholar
  49. Danon Y, Liu E, Barry D et al (2009b) Benchmark experiment of neutron resonance scattering models in Monte Carlo codes. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009).Google Scholar
  50. Davis JC (1989) The LLNL multi-user tandem laboratory. Nucl Instrum Methods B 40–41(Part 2):705–708CrossRefGoogle Scholar
  51. Di Lullo AR, Massey TN, Grimes SM et al (2008) A fission chamber measurement of the B-nat(d,n) cross section for use in neutron detector calibration. Nucl Sci Eng 159(3):346–350Google Scholar
  52. Dietrich FS, Anderson JD, Bauer RW et al (2003) Importance of isovector effects in reproducing neutron total cross section differences in the W isotopes. Phys Rev C 67(4):044606CrossRefGoogle Scholar
  53. Drosg M (2005) Drosg-2000, codes and database for 59 neutron source reactions, Tech. Rep. IAEA report IAEA-NDS-87, Rev. 9 (May 2005).
  54. Dudey ND, Heinrich RR, Madson AA (1970) Reaction cross sections of Rb-85(n,gamma)Rb-86m, Rb-87(n,gamma)Rb-88, and Y-89(n,gamma) Y-90m between 0.16 MeV and 1.5 MeV. J Nucl Energy 24(4):181CrossRefGoogle Scholar
  55. Elsevier, Inc. Engineering village (2009).
  56. Escher JE, Dietrich FS (2006) Determining (n, f) cross sections for actinide nuclei indirectly: examination of the surrogate ratio method. Phys Rev C 74(5):054601CrossRefGoogle Scholar
  57. Fadil M, Rannou B (2008) About the production rates and the activation of the uranium carbide target for SPIRAL2. Nucl Instrum Methods B 266 (19–20):4318–4321CrossRefGoogle Scholar
  58. Farrell JA and Pineo WFE (1968) Neutron cross sections of 6Li in the kilovolt region. In: Proceedings of the conference on neutron cross sections and technology. NBS Special Publication 299(1):153–158Google Scholar
  59. Fernbach S, Serber R, Taylor TB (1949) The scattering of high energy neutrons by nuclei. Phys Rev 75(9):1352–1355CrossRefGoogle Scholar
  60. Feshbach H, Porter CE, Weisskopf VF (1954) Model for nuclear reactions with neutrons. Phys Rev 96(2):448–464MATHCrossRefGoogle Scholar
  61. Finlay RW, Brient CE, Carter DE et al (1982) The Ohio-University beam swinger facility. Nucl Instrum Methods Phys Res 198(2–3):197– 206CrossRefGoogle Scholar
  62. Firk F, Whittaker J, Bowey E et al (1963) A nanosecond neutron time-of-fight system for the Harwell 30 MeV electron linac. Nucl Instrum Methods 23:141–146CrossRefGoogle Scholar
  63. Flaska M, Borella A, Lathouwers D et al (2004) Modeling of the GELINA neutron target using coupled electron-photon-neutron transport with the MCNP4C3 code. Nucl Instrum Methods phys Sect A 531(3):392–406CrossRefGoogle Scholar
  64. Foderaro A (1971) The elements of neutron interaction theory. MIT Press, CambridgeGoogle Scholar
  65. Frank IM, Pacher P (1983) 1 st experience on the high-intensity pulsed reactor IBR-2. Physica B 120(1–3):37–44Google Scholar
  66. Fröhner F (2000) Evaluation and analysis of nuclear resonance data. Tech. Rep. JEFF Report 18, OECD/NEAGoogle Scholar
  67. Fujita Y (1986) Neutron TOF spectrometer at KURRI electron linac. In: Proceedings of the 1985 seminar on nuclear data (JAERI-M-86–080), Kyoto, p 334–337Google Scholar
  68. Futakawa M, Haga K, Wakui T et al (2009) Development of the HP target in the J-PARC neutron source. Nucl Instrum Methods A 600(1): 18–21CrossRefGoogle Scholar
  69. Ge Zhigang et al (2008) The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities In: Proceedings of the international conference on nuclear data for science and technology ND2007, EDP Sciences, 07570Google Scholar
  70. Good WM, Neiler JH, Gibbons JH (1958) Neutron total cross sections in the keV region by fast time-of-fight measurements. Phys Rev 109(3):926–933CrossRefGoogle Scholar
  71. Grallert A, Csikai J, Qaim SM et al (1993) Recommended target materials for d-d neutron sources. Nucl Instrum Methods Phys Res Sect A 334(1):154–159CrossRefGoogle Scholar
  72. Guber KH et al (2005) New neutron cross-section measurements at ORELA for improved nuclear data calculations. In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) International conference on nuclear data for science and technology, AIP, vol 769, Santa Fe, p 1706Google Scholar
  73. Gunsing F n_TOF Collaboration et al (2009) Measurement of the 232Th(n,γ) resonance reaction at the n_TOF facility at CERN, unpublishedGoogle Scholar
  74. Hansen LF, Anderson JD, Brown PS et al (1973) Measurements and calculations of neutron-spectra from iron bombarded with 14-MeV neutrons. Nucl Sci Eng 51(3):278–295Google Scholar
  75. Hansen LF, Wong C, Komoto TT et al (1980) Measurements and calculations of the neutron emission-spectra from materials used in fusion-fission reactors. Nucl Technol 51(1):70–77Google Scholar
  76. Haq RU, Pandey A, Bohigas O (1982) Fluctuations properties of nuclear energy levels: do theory and experiment agree? Phys Rev Lett 48(6): 1086–1089CrossRefGoogle Scholar
  77. Hatarik R, Bernstein LA, Burke JT et al (2009) Using (d,p gamma) as a surrogate reaction for (n,gamma) AIP Conference Proceedings (2009) Vol.1090, p. 445–449CrossRefGoogle Scholar
  78. Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev 87(2):366–373MATHCrossRefGoogle Scholar
  79. Herman M, Capote R, Carlson BV et al (2007) EMPIRE: Nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715CrossRefGoogle Scholar
  80. Hockenbury RW, Bartolome ZM, Tatarczuk JR et al (1969) Neutron radiative capture in Na, Al, Fe, and Ni from 1 to 200 kEV. Phys Rev 178(4): 1746–1769CrossRefGoogle Scholar
  81. Hodgson PE (1971) Nuclear reactions and nuclear structure. Clarendon Press, OxfordGoogle Scholar
  82. Hogue HH, Vonbehren PL, Glasgow DW et al (1979) Elastic and inelastic-scattering of 7-MeV to 14-MeV neutrons from Li-6 and Li-7. Nucl Sci Eng 69(1):22–29Google Scholar
  83. Hori J et al (2008) Neutron capture cross section measurement on 243Am with a 4π Ge spectrometer. In: Proceedings of the 2008 symposium on nuclear data, Tokai, pp. 20–21Google Scholar
  84. Humblet J, Rosenfeld L (1961) Theory of nuclear reactions: I. resonant states and collision matrix. Nucl Phys 26(4):529–578MATHCrossRefGoogle Scholar
  85. Hwang RN (1973) Efficient methods for treatment of resonance cross-sections. Nucl Sci Eng 52(2):157–175Google Scholar
  86. Ibaraki M, Baba M, Miura T et al (2000) Experimental method for neutron elastic scattering cross-section measurement in 40–90 MeV region at TIARA. Nucl Instrum Methods Phys Res Sect A 446(3):536–544CrossRefGoogle Scholar
  87. Igashira M, Kitazawa H, Yamamuro N (1986) A heavy shield for the gamma-ray detector used in fast-neutron experiments. Nucl Instrum Methods Phys Res Sect A 245(2–3): 432–437CrossRefGoogle Scholar
  88. Ignatyuk AV, Fursov BI (2008) The latest BROND-3 developments. In: Proceedings of the international conference on nuclear data for science and technology ND2007, EDP Sciences, 07641Google Scholar
  89. Jaag S, Kappeler F (1995) Stellar (n,gamma) cross-section of the unstable isotope Eu-155. Phys Rev C 51(6):3465–3471CrossRefGoogle Scholar
  90. Jandel M et al (2008) Neutron capture cross section of Am-241. Phys Rev C 78(3):034 609CrossRefGoogle Scholar
  91. Joly S, Voignier J, Grenier G et al (1978) Measurement of fast-neutron capture cross-sections using a Nal spectrometer. Nucl Instrum Methods 153(2–3):493–501CrossRefGoogle Scholar
  92. Jongen Y, Ryckewaert G (1976) Heavy-ion acceleration at CYCLONE (Belgium). IEEE Trans Nucl Sci 23(2):987–990CrossRefGoogle Scholar
  93. Kapur PL, Peierls RE (1938) Dispersion formula for nuclear reactions. Proc R Soc A166:277–295Google Scholar
  94. Kegel GHR (1989) Fast-neutron generation with a type Cn Van De graaff accelerator. Nucl Instrum Methods Phys Res Sect B 40–1:1165–1168CrossRefGoogle Scholar
  95. Kim GN et al (2002) Measurement of photoneutron spectrum at Pohang neutron facility. Nucl Instrum Methods Phys Res Sect A 485(3): 458–467CrossRefGoogle Scholar
  96. Klug J et al (2002) SCANDAL – a facility for elastic neutron scattering studies in the 50–130 MeV range. Nucl Instrum Methods Phys Res Sect A 489(1–3):282–303CrossRefGoogle Scholar
  97. Klug J, Altstadt E, Beckert C et al (2007) Development of a neutron time-of-fight source at the ELBE accelerator. Nucl Instrum Methods Phys Res Sect A 577(3):641–653CrossRefGoogle Scholar
  98. Knoll G (2000) Radiation detection & measurement. John Wiley & Sons, New YorkGoogle Scholar
  99. Kobayashi K, Lee S, Yamamoto S et al (2002) Measurement of neutron capture cross section of Np-237 by linac time-of-fight method and with linac-driven lead slowing-down spectrometer. J Nucl Sci Technol 39(2):111–119CrossRefGoogle Scholar
  100. Kobayashi K, Lee S, Yamamoto S (2004) Neutron capture cross-section measurement of Tc-99 by linac time-of-fight method and the resonance analysis. Nucl Sci Eng 146(2):209–220Google Scholar
  101. Koehler PE (2001) Comparison of white neutron sources for nuclear astrophysics experiments using very small samples. Nucl Instrum Methods A 460:352–361CrossRefGoogle Scholar
  102. Kohler R, Mewissen L, Poortmans F et al (1985) High-resolution neutron resonance spectroscopy. AIP Conf Proc 124:306–307CrossRefGoogle Scholar
  103. Kondo K, Murata I, Ochiai K et al (2006) Charged-particle spectrometry using a pencil-beam DT neutron source for double-differential cross-section measurement. Nucl Instrum Methods Phys Res Sect A 568(2):723–733CrossRefGoogle Scholar
  104. Koning A et al (2006) The JEFF-31 nuclear data library, JEFF report 21. Tech. rep., JEFF data can be accessed at the OECD Nuclear Energy AgencyGoogle Scholar
  105. Koning AJ, Hilaire S, Duijvestijn M (2007) TALYS a nuclear reaction program. Tech. rep.Google Scholar
  106. Kononov VN et al (1982) Fast-neutron radiative-capture cross-sections and d-wave strength functions. Proceedings of the 4th international symposium on capture gamma-ray spectroscopy and related topics, London, pp 518–519Google Scholar
  107. Kononov VN, Poletaev ED, Timokhov VM et al (1987) Fast-neutron radiative-capture cross-sections and transmissions for tungsten isotopes. Sov J Nucl Phys 46(1):33–34Google Scholar
  108. Kopecky S, Brusegan A (2006) The total neutron cross section of Ni-61. Nucl Phys A 773(3–4): 173–186CrossRefGoogle Scholar
  109. Kornilov NV, Kagalenko AB (1995) Inelastic neutron-scattering by U-235 and U-238 nuclei. Nucl Sci Eng 120(1):55–64Google Scholar
  110. Krane K (1987) Introductory nuclear physics. John Wiley & Sons, New YorkGoogle Scholar
  111. Lamb WE (1939) Capture of neutrons by atoms in a crystal. Phys Rev 55(2):190–197MATHCrossRefGoogle Scholar
  112. Lane AM, Thomas RG (1958) R-matrix theory of nuclear reactions. Rev Mod Phys 30(2): 257–353MathSciNetCrossRefGoogle Scholar
  113. Larson NM (2006) Updated users’ guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equations. SAMMY, computer code Report ORNL/TM-9179/R7, Oak Ridge National LaboratoryGoogle Scholar
  114. Leeb H, Wilmsen S (2000) Violation of pseudospin symmetry in nucleon-nucleus scattering: Exact relations. Phys Rev C 62(2):024602CrossRefGoogle Scholar
  115. Leinweber G, Barry DP, Trbovich MJ et al (2006) Neutron capture and total cross-section measurements and resonance parameters of gadolinium. Nucl Sci Eng 154(3):261–279Google Scholar
  116. Lesher SR, McKay CJ, Mynk M et al (2007) Low-spin structure of Mo96 studied with the (n; n γ) reaction. Phys Rev C 75(3):034318CrossRefGoogle Scholar
  117. Lisowski PW, Schoenberg KF (2006) The Los Alamos neutron science center. Nucl Instrum Methods Phys Res sect A 562(2):910–914CrossRefGoogle Scholar
  118. Luk’yanov AA, Yaneva NB (1997) Multilevel parametrization of resonance neutron cross sections. Phys Part Nucl 28:331–347CrossRefGoogle Scholar
  119. Lychagin AA, Simakov SP, Devkin BV et al (1987) Study of the Fe(n, n gamma) reaction with 14.1-MeV neutrons. Sov J Nucl Phys 45(5): 761–766Google Scholar
  120. Lyles BF, Bernstein LA, Burke JT et al (2007) Absolute and relative surrogate measurements of the U-236(n,f) cross section as probe of angular momentum effects. Phys Rev C 76(1):014606CrossRefGoogle Scholar
  121. Lynn JE (1968) The theory of neutron resonance reactions, Clarendon Press, OxfordGoogle Scholar
  122. Mannhart W, Schmidt D (2002) Measurement of the 28Si(n,p), 29Si(n,p) and 30Si(n,alpha) cross sections between 6.9 and 14.0 MeV. J Nucl Sci Technol 1:218–221Google Scholar
  123. Mannhart W, Schmidt D (2005) Measurement of neutron reaction sections between 8 and 14 MeV. AIP 769:609–612Google Scholar
  124. Marrone S et al (2004) A low background neutron flux monitor for the n_TOF facility at CERN. Nucl Instrum Methods Phys Res Sect A 517 (1–3):389CrossRefGoogle Scholar
  125. Massey TN, A1-Quraishi S, Brient CE et al (1998) A measurement of the A1-27 (d,n) spectrum for use in neutron detector calibration. Nucl Sci Eng 129(2):175–179Google Scholar
  126. Mehta ML (1960) On the statistical properties of the level-spacings in nuclear spectra. Nucl Phys 18:395MATHCrossRefGoogle Scholar
  127. Mehta ML (1991) Random matrices. Academic, BostonMATHGoogle Scholar
  128. Meister A (1994) Calculations on lattice vibration effects in the doppler broadening of the 0.18 eV Cd neutron resonance cross section. Tech. Rep. CE/R/VG/78/94, JRC-IRMMGoogle Scholar
  129. Mellema S, Finlay RW, Dietrich FS et al (1983) Microscopic and conventional optical-model analysis of fast-neutron scattering from Fe-54,Fe-56. Phys Rev C 28(6):2267– 2277CrossRefGoogle Scholar
  130. Mihailescu LC, Borcea C, Koning AJ et al (2008) High resolution measurement of neutron inelastic scattering and (n,2n) cross-sections for Bi-209. Nucl Phys A 799:1–29CrossRefGoogle Scholar
  131. Mocko M, Muhrer G, Tovesson F (2008) Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source. Nucl Instrum Methods Phys Res Sect A 589(3): 455–464CrossRefGoogle Scholar
  132. Moldauer PA (1975b) Why Hauser-Feshbach formula works. Phys Rev C 11(2):426–436CrossRefGoogle Scholar
  133. Moldauer PA (1975a) Direct reaction effects on compound cross-sections. Phys Rev C 12(3): 744–756CrossRefGoogle Scholar
  134. Moldauer PA (1976) Evaluation of fluctuation enhancement factor. Phys Rev C 14(2): 764–766CrossRefGoogle Scholar
  135. Moldauer PA (1980) Statistics and the average cross-section. Nucl Phys A 344(2):185–195CrossRefGoogle Scholar
  136. Molnar G (2004) Handbook of prompt gamma activation analysis. Springer, BerlinGoogle Scholar
  137. Moxon MC, Brisland JB (1991) REFIT, a least squares fitting program for resonance analysis of neutron transmission and capture data computer code. Tech. rep., United Kingdom Atomic Energy AuthorityGoogle Scholar
  138. Mughabghab SF (2006) Atlas of neutron resonances. Elsevier Science, AmsterdamGoogle Scholar
  139. Naberejnev DG, Mounier C, Sanchez R (1999) The influence of crystalline binding on resonant absorption and reaction rates. Nucl Sci Eng 131:220Google Scholar
  140. Nguyen VD et al (2006) Measurements of neutron and photon distributions by using an activation technique at the Pohang neutron facility. J Korean Phys Soc 48(3):382–389Google Scholar
  141. Nuclear data standards for nuclear measurements (1991) NEANDC/INDC standards file. Tech. Rep. NEANDC-311. http://www Scholar
  142. Nystrom G, Bergqvis I, Lundberg B (1971) Neutron-capture cross-sections in F, Mg, Al, Si, P and S from 20 to 80 keV. Phys Scr 4(3):95CrossRefGoogle Scholar
  143. Orphan V, Hoot C, Carlson A et al (1969) A facility for measuring cross sections of (n,xgamma) reactions using an electron linac. Nucl Instrum Methods 73(1):1–12CrossRefGoogle Scholar
  144. Overberg ME, Moretti BE, Slovacek RE et al (1999) Photoneutron target development for the RPI linear accelerator. Nucl Instrum Methods Phys Res Sect A 438(2–3):253–264CrossRefGoogle Scholar
  145. Pancin J et al (2004) Measurement of the n_TOF beam profile with a micromegas detector. Nucl Instrum Methods Phys Res Sect A 524(1–3):102CrossRefGoogle Scholar
  146. Panebianco S, Berg K, David JC et al (2009) Neutronic characterization of the MEGAPIE target. Ann Nucl Energy 36(3):350–354CrossRefGoogle Scholar
  147. Paradela C et al (2009) Neutron induced fission cross section of 234U and 237Np measured at the n_TOF facility. unpublishedGoogle Scholar
  148. Payne GL, Schlessinger L (1970) Properties of the K-matrix in nuclear-reaction theory. Phys Rev C 2(5):1648–1653CrossRefGoogle Scholar
  149. Petit M et al (2004) Determination of the 233Pa reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa. Nucl Phys A 735:345–371CrossRefGoogle Scholar
  150. Petrich D, Neil M, Kappeler F et al (2008) A neutron production target for FRANZ. Nucl Instrum Methods A 596(3):269–275CrossRefGoogle Scholar
  151. Pillon M, Angelone M, Martone M, Rado V (1995) Characterization of the source neutrons produced by the Frascati neutron generator. Fus Eng Des 28:683–688Google Scholar
  152. Plag R et al (2003) An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-sections. Nucl Instrum Methods Phys Res Sect A 496:425CrossRefGoogle Scholar
  153. Plettner C, Ai H, Beausang CW et al (2005) Estimation of (n,f) cross sections by measuring reaction probability ratios. Phys Rev C 71(5):051602CrossRefGoogle Scholar
  154. Porter CE, Thomas RG (1956) Fluctuations of nuclear reaction widths. Phys Rev 104(2):483–491CrossRefGoogle Scholar
  155. Qaim SM, Wolfle R, Rahman MM et al (1984) Measurement of (n,p) and (n,alpha) reaction cross-sections on some isotopes of nickel in the energy region of 5 to 10 MeV using a deuterium gas-target at a compact cyclotron. Nucl Sci Eng 88(2):143–153Google Scholar
  156. Quesada JM, Capote R, Soukhovitskii ES et al (2007) Approximate Lane consistency of the dispersive coupled-channels potential for actinides. Phys Rev C 76(5):057602CrossRefGoogle Scholar
  157. Rapp M, Danon Y, Block RC et al (2009) High energy neutron time of fight measurements of carbon and beryllium samples at the RPI linac. In: Society AN (ed) International conference on mathematics, computational methods & reactor physics 2009, Saratoga SpringsGoogle Scholar
  158. Ray ER, Good WM (1972) Experimental neutron resonance spectroscopy, Academic, New York, chap. Pulsed Accelerator Time-of-Flight SpectrometersGoogle Scholar
  159. Reich CW, Moore MS (1958) Multilevel formula for the fission process. Phys Rev 111(3):929–933CrossRefGoogle Scholar
  160. Reimer P, Koning AJ, Plompen AJM et al (2009) Neutron induced reaction cross sections for the radioactive target nucleus Tc-99. Nucl Phys A 815:1–17CrossRefGoogle Scholar
  161. Reuss P (2008) Neutron physics. EDP Sciences, OaklandGoogle Scholar
  162. Rochman D, Haight RC, O’Donnell JM et al (2004) Neutron-induced reaction studies at FIGARO using a spallation source. Nucl Instrum Methods Phys Res Sect A 523(1–2):102–115CrossRefGoogle Scholar
  163. Rochman D et al (2005) Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator. Nucl Instrum Methods Phys Res Sect A 550(1–2):397–413CrossRefGoogle Scholar
  164. Romano C, Danon Y, Block R et al (2008) Measurements of fission fragment properties using RPI’s lead slowing-down spectrometer. In: Bersillon, O, Gunsing, F, Bauge, E, Jacqmin, R, Leray, S (eds), Proceedings of the international conference on nuclear data for science and technology, Nice, France, EDP Sciences Vol. 1, pp. 371–374Google Scholar
  165. Rubbia C et al (1998) A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV. Tech. Rep. CERN/LHC/98–02, CERNGoogle Scholar
  166. Sage C, Semkova V, Bouland O et al (2009) High resolution measurements of the 241 Am(n,2n) reaction cross section. unpublishedGoogle Scholar
  167. Saglime FJ III, Danon Y, Block R (2006) Digital data acquisition system for time of fight neutron beam measurements. In: The American Nuclear Society’s 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, Carlsbad, p 368Google Scholar
  168. Saglime F, Danon Y, Block R et al (2009) High energy neutron scattering benchmark of Monte Carlo computations. In: International conference on mathematics, computational methods & reactor physics (M&C 2009), Saratoga SpringsGoogle Scholar
  169. Schmidt D (2008) Determination of neutron scattering cross sections with high precision at PTB in the energy region 8 to 14 MeV. Nucl Sci Eng 160:349–362Google Scholar
  170. Schmidt D, Zhou ZY, Ruan XC et al (2005) Application of non-monoenergetic sources in fast neutron scattering measurements. Nucl Instrum Methods Phys Res Sect A 545(3):658–682CrossRefGoogle Scholar
  171. Schmittroth F, Tobocman W (1971) Comparison of the R-matrix nuclear reaction theories. Phys Rev C 3:1010–1019CrossRefGoogle Scholar
  172. Schut PAC, Kockelmann W, Postma H et al (2008) Neutron resonance capture and neutron diffraction analysis of roman bronze water taps. J Radioanal Nucl Chem 278(1):151–164CrossRefGoogle Scholar
  173. Semkova V, Plompen AJM (2007) Neutron-induced dosimetry reaction cross-section measurements from the threshold up to 20 MeV. Radiat Prot Dosimetry 126(1–4):126–129CrossRefGoogle Scholar
  174. Shcherbakov O, Furutaka K, Nakamura S et al (2005) Measurement of neutron capture cross section of Np-237 from 0.02 to 100 eV. J Nucl Sci Technol 42(2):135–144Google Scholar
  175. Shibata K et al (2002) Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3. J Nucl Sci Technol 39(11):1125–1136CrossRefGoogle Scholar
  176. Shyam R, Scholten O (2008) Photoproduction of eta mesons within a coupled-channels K-matrix approach. Phys Rev C 78(6):065201CrossRefGoogle Scholar
  177. Sirakov I, Capote R, Gunsing F et al (2008) An ENDF-6 compatible evaluation for neutron induced reactions of Th-232 in the unresolved resonance region. Ann Nucl Energy 35(7):1223–1231CrossRefGoogle Scholar
  178. Staples P, Egan JJ, Kegel GHR et al (1995) Prompt fission neutron energy-spectra induced by fast-neutrons. Nucl Phys A 591(1):41–60CrossRefGoogle Scholar
  179. Sukhoruchkin SI, Soroko ZN, Deriglazov VV (1998) Low energy neutron physics, tables of neutron resonance parameters, vol I/16B. Springer, Landolt-Börnstein, BerlinGoogle Scholar
  180. Tagliente G et al (2008) Experimental study of the Zr-91(n, gamma) reaction up to 26 keV. Phys Rev C 78(4):045804CrossRefGoogle Scholar
  181. Takahashi A, Ichimura E, Sasaki Y et al (1988) Measurement of double differential neutron emission cross-sections for incident neutrons of 14-MeV. J Nucl Sci Technol 25(3):215–232Google Scholar
  182. Tovesson F, Hill TS (2007) Neutron induced fission cross section of Np-237 from 100 keV to 200 MeV. Phys Rev C 75(3):034610CrossRefGoogle Scholar
  183. Tovesson F, Hill TS (2008) Subthreshold fission cross section of 237Np. Nucl Sci Eng 159:94Google Scholar
  184. Tovesson F, Hill TS, Mocko M et al (2009) Neutron induced fission of Pu-240,Pu-242 from 1 eV to 200 MeV. Phys Rev C 79(1):014613CrossRefGoogle Scholar
  185. Trbovich MJ, Barry DP, Slovacek RE et al (2009) Hafnium resonance parameter analysis using neutron capture and transmission experiments. Nucl Sci Eng 161(3):303–320Google Scholar
  186. Tronc D, Salome JM, Bockhoff KH (1985) A new pulse-compression system for intense relativistic electron-beams. Nucl Instrum Methods Phys Res Sect A 228(2–3):217–227CrossRefGoogle Scholar
  187. Verbaarschot JJM (1986) Investigation of the formula for the average of two S-matrix elements in compound nucleus reactions. Ann Phys 168(2): 368–386MathSciNetCrossRefGoogle Scholar
  188. Verbaarschot JJM, Weidenmuller HA, Zirnbauer MR (1985) Grassmann integration in stochastic quantum physics – the case of compound nucleus scattering. Phys Rep Rev Sect Phys Lett 129(6):367–438MathSciNetGoogle Scholar
  189. Vogt E (1962) Theory of low energy nuclear reactions. Rev Mod Phys 34(4):723–747CrossRefGoogle Scholar
  190. Wagemans C, De Smet L, Vermote S et al (2008) Measurement of the U-236(n, f) cross section in the neutron energy range from 0.5 eV up to 25 keV. Nucl Sci Eng 160(2):200–206Google Scholar
  191. Wallerstein G et al (1997) Synthesis of the elements in stars: forty years of progress. Rev Mod Phys 69:995CrossRefGoogle Scholar
  192. Wang T et al (2008) Measurement of the total neutron cross-section and resonance parameters of molybdenum using pulsed neutrons generated by an electron linac. Nucl Instrum Methods Phys Res Sect B 266(4):561–569CrossRefGoogle Scholar
  193. Weisskopf VF, Ewing DH (1940) On the yield of nuclear reactions with heavy elements. Phys Rev 57(6):472–485; erratum 57(10):935Google Scholar
  194. Wigner EP, Eisenbud L (1947) Higher angular momenta and long range interaction in resonance reactions. Phys Rev 72(1):29–41CrossRefGoogle Scholar
  195. Wisshak K, Guber K, Kappeler F et al (1990) The Karlsruhe 4-pi barium fluoride detector. Nucl Instrum Methods Phys Res Sect A 292(3):595–618CrossRefGoogle Scholar
  196. Wisshak K, Kappeler F (1978) Neutron-capture cross-section ratios of Pu-240, Pu-242, U-238, and Au-197 in energy-range from 10 to 90 keV. Nucl Sci Eng 66(3):363–377Google Scholar
  197. Wisshak K, Kappeler F (1979) Neutron-capture cross-section ratios of Pu-240 and Pu-242 versus Au-197 in the energy-range from 50 to 250 keV. Nucl Sci Eng 69(1): 39–46Google Scholar
  198. Wisshak K, Voss F, Arlandini C et al (2004) Stellar neutron capture on Ta-180m. I. cross section measurement between 10 keV and 100 keV. Phys Rev C 69(5):055801CrossRefGoogle Scholar
  199. Woods R, Mckibben JL, Henkel RL (1974) Los-Alamos 3-stage Van de Graaff facility. Nucl Instrum Methods 122(1–2):81–97CrossRefGoogle Scholar
  200. Younes W, Britt HC (2003) Neutron-induced fission cross sections simulated from (t,pf) results. Phys Rev C 67(2):024610CrossRefGoogle Scholar
  201. Zerkin VV, McLane V, Herman MW et al (2005) EXFOR-CINDA-ENDF: migration of databases to give higher-quality nuclear data services. AIP Conf Proc 769(1): 586CrossRefGoogle Scholar
  202. Zhuravlev BV, Demenkov VG, Lychagin AA et al (2007) A measuring complex for time-of-fight spectrometry of fast neutrons. Instrum Exp Tech 50(6):730–736CrossRefGoogle Scholar
  203. Zwillinger D (2003) CRC standard mathematical tables and formulae. CRC Press, Boca RatonMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert C. Block
    • 1
  • Yaron Danon
    • 1
  • Frank Gunsing
    • 2
  • Robert C. Haight
    • 3
  1. 1.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.CEA SaclayIrfuFrance
  3. 3.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations