Distance Measures and Applications to Multi-Modal Variational Imaging

  • Christiane Pöschl
  • Otmar Scherzer
Reference work entry


Today imaging is rapidly improving by increased specificity and sensitivity of measurement devices. However, even more diagnostic information can be gained by combination of data recorded with different imaging systems.


Similarity Measure Mutual Information Image Registration Kernel Density Estimation Multimodal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of OS has been supported by the Austrian Science Fund (FWF) within the national research networks Industrial Geometry, project 9203-N12, and Photoacoustic Imaging in Biology and Medicine, project S10505-N20.

The work of CP has been supported by the Austrian Science Fund (FWF) via the Erwin Schrödinger scholarship J2970.

References and Further Reading

  1. 1.
    Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J Roy Stat Soc B 28:131–142Google Scholar
  2. 2.
    Bajcsy R, Kovačič S (1989) Multiresolution elastic matching. Comput Vision Graph 46:1–21Google Scholar
  3. 3.
    Christensen G (1994) Deformable shape models for anatomy. PhD thesis, Washington University, Department of Electrical EngineeringGoogle Scholar
  4. 4.
    Chung ACS, Wells WM, Norbash A, Grimson WEL (2002) Multi modal image registration by minimizing Kullback-Leibler distance. In: MICCAI’02: proceedings of the 5th international conference on medical image computing and computer-assisted intervention-part II. Springer, London, pages 525–532Google Scholar
  5. 5.
    Csiszár I (1963) Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud Akad Mat Kutató Int Közl 8: 85–108Google Scholar
  6. 6.
    Dragomir SS (2005) Some general divergence measures for probability distributions. Acta Math Hung 109(4):331–345Google Scholar
  7. 7.
    Droske M, Rumpf M (2003/2004) A variational approach to nonrigid morphological image registration. SIAM J Appl Math 64(2):668–687 (electronic)Google Scholar
  8. 8.
    Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer, DordrechtGoogle Scholar
  9. 9.
    Ens K, Schumacher H, Franz A, Fischer B (2007) Improved elastic medical image registration using mutual information. In: Pluim JPW, Reinhardt JM (eds) Medical imaging 2007: image processing, vol 6512. SPIE, p 65122CGoogle Scholar
  10. 10.
    Fahrmeir L, Künstler R, Pigeot I, Tutz G (2004) Statistik, 5th edn. Springer, BerlinGoogle Scholar
  11. 11.
    Faugeras O, Hermosillo G (2004) Well-posedness of two nonrigid multi modal image registrational methods. SIAM J Appl Math 64(5):1550–1587 (electronic)Google Scholar
  12. 12.
    Feldman D, Österreicher F (1989) A note on f-divergences. Stud Sci Math Hung 24(2–3): 191–200Google Scholar
  13. 13.
    Gee J, Haynor D, Le Briquer L, Bajcsyand R (1997) Advances in elastic matching theory and its implementation. In: CVRMed, pp 63–72Google Scholar
  14. 14.
    Guetter C, Xu C, Sauer F, Hornegger J (2005) Learning based non-rigid multi modal image registration using Kullback-Leibler divergence. In: Medical image computing and computer-assisted intervention – MICCAI 2005, vol 3750 of Lecture Notes in Computer Science. Springer, pp 255–262Google Scholar
  15. 15.
    Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi modal images. In: Methods of information in medicine, Schattauer Verlag, Stuttgart, pp 726–733Google Scholar
  16. 16.
    Henn S, Witsch K (2003) multi modal image registration using a variational approach. SIAM J Sci Comput 25(4):1429–1447Google Scholar
  17. 17.
    Hermosillo G (2002) Variational methods for multi modal image matching. PhD thesis, Université de Nice, FranceGoogle Scholar
  18. 18.
    Hömke L (2006) A multigrid method for elastic image registration with additional structural constraints. PhD thesis, Heinrich-Heine Universität, DüsseldorfGoogle Scholar
  19. 19.
    Ivanov VK, Vasin VV, Tanana VP (2002) Theory of linear ill-posed problems and its applications (inverse and ill-posed problems series), 2nd edn. VSP, Utrecht, Translated and revised from the 1978 Russian originalGoogle Scholar
  20. 20.
    Kaneko S, Satoh Y, Igarashi S (2003) Using selective correlation coefficient for robust image registration. Pattern Recognit 36(5):1165–1173Google Scholar
  21. 21.
    Kim J, Fessler JA (2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging 23(11):1430–1444Google Scholar
  22. 22.
    Lee D, Hofmann M, Steinke F, Altun Y, Cahill ND, Scholkopf B (2009) Learning similarity measure for multi modal 3d image registration. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE Service Center, Piscataway, pp 186–193Google Scholar
  23. 23.
    Leventon ME, Grimson WEL (1998) Multi modal volume registration using joint intensity distributions. In: MICCAI’98: proceedings of the first international conference on medical image computing and computer-assisted intervention. Springer, London, pp 1057–1066Google Scholar
  24. 24.
    Likar B, Pernus F (2001) A hierarchical approach to elastic registration based on Mutual Information. Image Vis Comput 19:33–44Google Scholar
  25. 25.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) multi modality image registration by maximization of Mutual Information. IEEE Trans Med Imaging 16(2):187–198Google Scholar
  26. 26.
    Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22(1):120–128Google Scholar
  27. 27.
    Modersitzki J (2004) Numerical methods for image registration. Numerical mathematics and scientific computation. Oxford University Press, OxfordGoogle Scholar
  28. 28.
    Pluim JPW, Maintz JBA, Viergever MA (2004) f-information measures in medical image registration. IEEE Transactions on Medical Imaging, 23(12):1508–1516Google Scholar
  29. 29.
    Peckar W, Schnörr C, Rohr K, Stiehl HS (1998) Non-rigid image registration using a parameter-free elastic model. In: British machine vision conferenceGoogle Scholar
  30. 30.
    Pöschl C (2008) Tikhonov regularization with gerneral residual term. PhD thesis, Leopold Franzens Universität, InnsbruckGoogle Scholar
  31. 31.
    Rachev ST (1991) Probability metrics and the stability of stochastic models. Wiley Series in probability and mathematical statistics: applied probability and statistics. Wiley, ChichesterGoogle Scholar
  32. 32.
    Roche A (2001) Recalage d’images médicales par inférence statistique. PhD thesis, Université de Nice, Sophia-Antipolis, FranceGoogle Scholar
  33. 33.
    Roche A, Malandain G, Pennec X, Ayache N (1998) The correlation ratio as a new similarity measure for multi modal image registration. In: Lecture notes in computer science, vol 1496. Springer, pp 1115–1124Google Scholar
  34. 34.
    Roche A, Pennec X, Ayache N (1998) The correlation ratio as a new similarity measure for multi modal image registration. In: Medical image computing and computer-assisted interventation MICCAI98, LNCS 1496. Springer, pp 1115–1124Google Scholar
  35. 35.
    Studholme C (1997) Measures of 3D medical image alignment. PhD thesis, University of London, LondonGoogle Scholar
  36. 36.
    Vajda I (1989) Theory of statistical inference and information. Kluwer, DordrechtGoogle Scholar
  37. 37.
    van den Elsen P, Maintz JBA, Viergever MA (1995) Automatic registration of CT and MR brain images using correlation of geometrical features. IEEE Trans Med Imaging 14(2): 384–396Google Scholar
  38. 38.
    Viola PA (1995) Alignment by maximization of mutual information. PhD thesis, Massachusetts Institute of Technology, MassachusettsGoogle Scholar
  39. 39.
    Viola PA, Wells WM (1995) Alignment by maximization of mutual information. In: ICCV’95: proceedings of the fifth international conference on computer vision, IEEE Computer Society, p 16Google Scholar
  40. 40.
    Wang XY, Feng DD (2005) Automatic elastic medical image registration based on image intensity. Int J Image Graph 5(2):351–369Google Scholar
  41. 41.
    West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM, Maciunas RJ, Barillot C, Lemoine D, Collignon A, Maes F, Suetens P, Vandermeulen D, van den Elsen P, Napel S, Sumanaweera TS, Harkness B, Hemler PF, Hill DLG, Hawkes DJ, Studholme C, Maintz JBA, Viergever MA, Malandain G, Pennec X, Noz ME, Maguire GQ, Pollack M, Pelizzari CA, Robb RA, Hanson D, Woods RP (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554–566Google Scholar
  42. 42.
    Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620–633Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christiane Pöschl
    • 1
  • Otmar Scherzer
    • 2
  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.University of ViennaViennaAustria

Personalised recommendations