Image Segmentation with Shape Priors: Explicit Versus Implicit Representations

  • Daniel Cremers
Reference work entry


Image Analysis and Prior Knowledge

Image segmentation is among the most studied problems in image understanding and computer vision. The goal of image segmentation is to partition the image plane into a set of meaningful regions. Here meaningful typically refers to a semantic partitioning where the computed regions correspond to individual objects in the observed scene. Unfortunately, generic purely low-level segmentation algorithms often do not provide the desired segmentation results, because the traditional low level assumptions like intensity or texture homogeneity and strong edge contrast are not sufficient to separate objects in a scene.

To overcome these limitations, researchers have proposed to impose prior knowledge into low-level segmentation methods. In the following, we will review methods which allow to impose knowledge about the shape of objects of interest into segmentation processes.

In the literature there exist various definitions of the term shape, from...


Implicit Representation Spline Curve Kernel Density Estimator Shape Representation Signed Distance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Amini AA, Weymouth TE, Jain RC (1990) Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Mach Intell 12(9):855–867CrossRefGoogle Scholar
  2. 2.
    Awate SP, Tasdizen T, Whitaker RT (2006) Unsupervised texture segmentation with nonparametric neighborhood statistics. In: European conference on computer vision (ECCV). Springer, Graz, pp 494–507Google Scholar
  3. 3.
    Blake A, Isard M (1998) Active contours. Springer, LondonCrossRefGoogle Scholar
  4. 4.
    Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, CambridgeGoogle Scholar
  5. 5.
    Bookstein FL (1978) The measurement of biological shape and shape change, vol 24 of lecture notes in Biomath. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal surfaces via graph cuts. In: IEEE international conference on computer vision, Nice, pp 26–33Google Scholar
  7. 7.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137CrossRefGoogle Scholar
  8. 8.
    Brox T, Rousson M, Deriche R, Weickert J (2003) Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov N, Westenberg MA (eds) Computer analysis of images and patterns, vol 2756 of LNCS. Springer, Groningen, pp 353–360CrossRefGoogle Scholar
  9. 9.
    Brox T, Weickert J (2004) A TV flow based local scale measure for texture discrimination. In: Pajdla T, Hlavac V (eds) European conference on computer vision, vol 3022 of LNCS. Springer, Prague, pp 578–590Google Scholar
  10. 10.
    Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. In: Proceedings of the IEEE International Conference on Computer Vision, Boston, pp 694–699Google Scholar
  11. 11.
    Chan T, Esedoglu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5): 1632–1648MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chan T and Zhu W (2003) Level set based shape prior segmentation. Technical report 03-66, Computational Applied Mathematics, UCLA, Los AngelesGoogle Scholar
  13. 13.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2): 266–277MATHCrossRefGoogle Scholar
  14. 14.
    Chan TF, Vese LA (2001) A level set algorithm for minimizing the Mumford–Shah functional in image processing. In: IEEE workshop on variational and level set methods, Vancouver, pp 161–168Google Scholar
  15. 15.
    Charpiat G, Faugeras O, Keriven R (2005) Approximations of shape metrics and application to shape warping and empirical shape statistics. J Found Comput Math 5(1): 1–58MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Charpiat G, Faugeras O, Pons J-P, Keriven R (2007) Generalized gradients: priors on minimization flows. Int J Comput Vision 73(3): 325–344CrossRefGoogle Scholar
  17. 17.
    Chen Y, Tagare H, Thiruvenkadam S, Huang F, Wilson D, Gopinath KS, Briggs RW, Geiser E (2002) Using shape priors in geometric active contours in a variational framework. Int J Comput Vision 50(3):315–328MATHCrossRefGoogle Scholar
  18. 18.
    Chow YS, Geman S, Wu LD (1983) Consistent cross-validated density estimation. Ann Stat 11:25–38MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Cipolla R, Blake A (1990) The dynamic analysis of apparent contours. In: IEEE international conference on computer vision. Springer, Osaka, pp 616–625Google Scholar
  20. 20.
    Cohen L, Kimmel R (1997) Global minimum for active contour models: a minimal path approach. Int J Comput Vision 24(1):57–78CrossRefGoogle Scholar
  21. 21.
    Cootes TF, Taylor CJ, Cooper DM, Graham J (1995) Active shape models – their training and application. Computer Vision and Image Understanding 61(1):38–59CrossRefGoogle Scholar
  22. 22.
    Cootes TF, Taylor CJ (1999) A mixture model for representing shape variation. Image and Vision Computing 17(8):567–574CrossRefGoogle Scholar
  23. 23.
    Coughlan J, Yuille A, English C, Snow D (2000) Efficient deformable template detection and localization without user initialization. Computer Vision and Image Understanding 78(3):303–319CrossRefGoogle Scholar
  24. 24.
    Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience, New YorkGoogle Scholar
  25. 25.
    Cremers D (2002) Statistical shape knowledge in variational image segmentation. PhD thesis, Department of Mathematics and Computer Science, University of Mannheim, GermanyGoogle Scholar
  26. 26.
    Cremers D (2006) Dynamical statistical shape priors for level set based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273CrossRefGoogle Scholar
  27. 27.
    Cremers D, Kohlberger T, Schnörr C (2002) Nonlinear shape statistics in Mumford–Shah based segmentation. In: Heyden A et al (eds) European conference on computer vision, vol 2351 of LNCS. Springer, Copenhagen, pp 93–108Google Scholar
  28. 28.
    Cremers D, Kohlberger T, Schnörr C (2003) Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36(9):1929–1943MATHCrossRefGoogle Scholar
  29. 29.
    Cremers D, Osher SJ, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vision 69(3):335–351CrossRefGoogle Scholar
  30. 30.
    Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vision 72(2):195–215CrossRefGoogle Scholar
  31. 31.
    Cremers D, Schmidt FR, Barthel F (2008) Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions. In: IEEE conference on computer vision and pattern recognition (CVPR), AnchorageGoogle Scholar
  32. 32.
    Cremers D, Soatto S (2003) A pseudo-distance for shape priors in level set segmentation. In: Paragios N (ed) IEEE 2nd international workshop on variational, geometric and level set methods, Nice, pp 169–176Google Scholar
  33. 33.
    Cremers D, Soatto S (2005) Motion competition: a variational framework for piecewise parametric motion segmentation. Int J Comput Vision 62(3):249–265CrossRefGoogle Scholar
  34. 34.
    Cremers D, Sochen N, Schnörr C (2006) A multiphase dynamic labeling model for variational recognition-driven image segmentation. In: Pajdla T, Hlavac V (eds) European conference on computer vision, vol 3024 of LNCS. Springer, pp 74–86Google Scholar
  35. 35.
    Cremers D, Sochen N, Schnörr C (2006) A multiphase dynamic labeling model for variational recognition-driven image segmentation. Int J Comput Vision 66(1):67–81CrossRefGoogle Scholar
  36. 36.
    Cremers D, Tischhäuser F, Weickert J, Schnörr C (2002) Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. Int J Comput Vision 50(3):295–313MATHCrossRefGoogle Scholar
  37. 37.
    Deheuvels P (1977) Estimation non paramétrique de la densité par histogrammes généralisés. Revue de Statistique Appliquée 25:5–42MathSciNetGoogle Scholar
  38. 38.
    Delingette H, Montagnat J (2000) New algorithms for controlling active contours shape and topology. In: Vernon D (ed) Proceedings of the European conference on computer vision, vol 1843 of LNCS. Springer, pp 381–395Google Scholar
  39. 39.
    Dervieux A, Thomasset F (1979) A finite element method for the simulation of Raleigh–Taylor instability. Springer Lect Notes Math 771: 145–158MathSciNetCrossRefGoogle Scholar
  40. 40.
    Devroye L, Györfi L (1985) Nonparametric density estimation: the L1 view. Wiley, New YorkMATHGoogle Scholar
  41. 41.
    Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, ChichesterMATHGoogle Scholar
  42. 42.
    Duin RPW (1976) On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Trans Comput 25: 1175–1179MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Farin G (1997) Curves and surfaces for computer–aided geometric design. Academic, San DiegoMATHGoogle Scholar
  44. 44.
    Franchini E, Morigi S, Sgallari F (2009) Segmentation of 3D tubular structures by a PDE-based anisotropic diffusion model. In: International conference on scale space and variational methods, vol 5567 of LNCS. Springer, pp 75–86Google Scholar
  45. 45.
    Fréchet M (1961) Les courbes aléatoires. Bull Int Stat Inst 38:499–504MATHGoogle Scholar
  46. 46.
    Fundana K, Overgaard NC, Heyden A (2008) Variational segmentation of image sequences using region-based active contours and deformable shape priors. Int J Comput Vision 80(3):289–299CrossRefGoogle Scholar
  47. 47.
    Gdalyahu Y, Weinshall D (1999) Flexible syntactic matching of curves and its application to automatic hierarchical classication of silhouettes. IEEE Trans Pattern Anal Mach Intell 21(12):1312–1328CrossRefGoogle Scholar
  48. 48.
    Geiger D, Gupta A, Costa LA, Vlontzos J (1995) Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17(3):294–302CrossRefGoogle Scholar
  49. 49.
    Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J Roy Stat Soc B 51(2):271–279Google Scholar
  50. 50.
    Grenander U, Chow Y, Keenan DM (1991) Hands: a pattern theoretic study of biological shapes. Springer, New YorkGoogle Scholar
  51. 51.
    Heiler M, Schnörr C (2003) Natural image statistics for natural image segmentation. In: IEEE international conference on computer vision, Nice, pp 1259–1266Google Scholar
  52. 52.
    Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 23:253–258CrossRefGoogle Scholar
  53. 53.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRefGoogle Scholar
  54. 54.
    Kendall DG (1977) The diffusion of shape. Adv Appl Probab 9:428–430CrossRefGoogle Scholar
  55. 55.
    Kervrann C, Heitz F (1999) Statistical deformable model-based segmentation of image motion. IEEE Trans Image Process 8:583–588CrossRefGoogle Scholar
  56. 56.
    Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ (1995) Gradient ows and geometric active contour models. In: IEEE international conference on computer vision, pp 810–815Google Scholar
  57. 57.
    Kim J, Fisher JW, Yezzi A, Cetin M, Willsky A (2002) Nonparametric methods for image segmentation using information theory and curve evolution. In: International conference on image processing, vol 3. Rochester, pp 797–800Google Scholar
  58. 58.
    Kohlberger T, Cremers D, Rousson M, Ramaraj R (2006) 4D shape priors for level set segmentation of the left myocardium in SPECT sequences. In: Medical image computing and computer assisted intervention, vol 4190 of LNCS. Springer, Heidelberg, pp 92–100Google Scholar
  59. 59.
    Kolev K, Klodt M, Brox T, Cremers D (2009) Continuous global optimization in multview 3D reconstruction. International Journal of Computer Vision 84:80–96CrossRefGoogle Scholar
  60. 60.
    Lachaud J-O, Montanvert A (1999) Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Medical Image Analysis 3(2):187–207CrossRefGoogle Scholar
  61. 61.
    Leitner F, Cinquin P (1991) Complex topology 3D objects segmentation. In: SPIE conference on advances in intelligent robotics systems, vol 1609. BostonGoogle Scholar
  62. 62.
    Leventon M, Grimson W, Faugeras O (2000) Statistical shape inuence in geodesic active contours. In: International conference on computer vision and pattern recognition, vol 1. Hilton Head Island, pp 316–323Google Scholar
  63. 63.
    Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175CrossRefGoogle Scholar
  64. 64.
    Matheron G (1975) Random sets and integral geometry. Wiley, New YorkMATHGoogle Scholar
  65. 65.
    McInerney T, Terzopoulos D (1995) Topologically adaptable snakes. In: Proceedings of the 5th international conference on computer vision. IEEE Computer Society Press, Los Alamitos, 20–23 June 1995, pp 840–845Google Scholar
  66. 66.
    Menet S, Saint-Marc P, Medioni G (1990) B–snakes: implementation and application to stereo. In: Proceedings of the DARPA image understanding workshop, Pittsburgh, 6–8 April 1990, pp 720–726Google Scholar
  67. 67.
    Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc Lond A 209:415–446MATHCrossRefGoogle Scholar
  68. 68.
    Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Intell 19(7):696–710CrossRefGoogle Scholar
  69. 69.
    Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Nain D, Yezzi A, Turk G (2003) Vessel segmentation using a shape driven flow. In: MICCAI. pp 51–59Google Scholar
  71. 71.
    Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27(1):27–57MATHCrossRefGoogle Scholar
  72. 72.
    Osher SJ, Sethian JA (1988) Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vision 46(3):223–247MATHCrossRefGoogle Scholar
  74. 74.
    Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve detection. IEEE Trans Pattern Anal Mach Intell 11(8):823–839CrossRefGoogle Scholar
  75. 75.
    Parzen E (1962) On the estimation of a probability density function and the mode. Ann Math Stat 33:1065–1076MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Rasmussen C-E, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, CambridgeMATHGoogle Scholar
  77. 77.
    Riklin-Raviv T, Kiryati N, Sochen N (2004) Unlevel sets: geometry and prior-based segmentation. In: Pajdla T, Hlavac V (eds) European conference on computer vision, vol 3024 of LNCS. Springer, Prague, pp 50–61Google Scholar
  78. 78.
    Rochery M, Jermyn I, Zerubia J (2006) Higher order active contours. Int J Comput Vision 69:27–42CrossRefGoogle Scholar
  79. 79.
    Rosenblatt F (1956) Remarks on some nonparametric estimates of a density function. Annof Math Stat 27:832–837MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Rousson M, Brox T, Deriche R (2003) Active unsupervised texture segmentation on a diffusion based feature space. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Madison, pp 699–704Google Scholar
  81. 81.
    Rousson M, Cremers D (2005) Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: MICCAI, vol 1, pp 757–764Google Scholar
  82. 82.
    Rousson M, Paragios N (2002) Shape priors for level set representations. In: Heyden A et al (eds) European conference on computer vision, vol 2351 of LNCS. Springer, pp 78–92Google Scholar
  83. 83.
    Rousson M, Paragios N, Deriche R (2004) Implicit active shape models for 3D segmentation in MRI imaging. In: MICCAI, vol 2217 of LNCS. Springer, pp 209–216Google Scholar
  84. 84.
    Rosenfeld A, Zucker SW, Hummel RA (1977) An application of relaxation labeling to line and curve enhancement. IEEE Trans Comput 26(4):394–403CrossRefGoogle Scholar
  85. 85.
    Schmidt FR, Farin D, Cremers D (2007) Fast matching of planar shapes in sub-cubic runtime. In: IEEE international conference on computer vision, Rio de JaneiroGoogle Scholar
  86. 86.
    Schoenemann T, Cremers D (2007) Globally optimal image segmentation with an elastic shape prior. In: IEEE international conference on computer vision, Rio de JaneiroGoogle Scholar
  87. 87.
    Schoenemann T, Cremers D (2007) Introducing curvature into globally optimal image segmentation: minimum ratio cycles on product graphs. In: IEEE international conference on computer vision, Rio de JaneiroGoogle Scholar
  88. 88.
    Schoenemann T, Cremers D (2008) Matching non-rigidly deformable shapes across images: a globally optimal solution. In: IEEE conference on computer vision and pattern recognition (CVPR), AnchorageGoogle Scholar
  89. 89.
    Schoenemann T, Cremers D (2010) A combinatorial solution for model-based image segmentation and real-time tracking IEEE Trans. Pattern Anal and Mach Intell 32(7): 1153–1164CrossRefGoogle Scholar
  90. 90.
    Schoenemann T, Kahl F, Cremers D (2009) Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. In: IEEE international conference on computer vision, KyotoGoogle Scholar
  91. 91.
    Schoenemann T, Schmidt FR, Cremers D (2008) Image segmentation with elastic shape priors via global geodesics in product spaces. In: British machine vision conference, LeedsGoogle Scholar
  92. 92.
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464MATHCrossRefGoogle Scholar
  93. 93.
    Sebastian T, Klein P, Kimia B (2003) On aligning curves. IEEE Trans Pattern Anal Mach Intell 25(1):116–125CrossRefGoogle Scholar
  94. 94.
    Serra J (1982) Image analysis and mathematical morophology. Academic, LondonGoogle Scholar
  95. 95.
    Silverman BW (1978) Choosing the window width when estimating a density. Biometrika 65:1–11MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Silverman BW (1992) Density estimation for statistics and data analysis. Chapman and Hall, LondonGoogle Scholar
  97. 97.
    Sundaramoorthi G, Yezzi A, Mennucci A, Sapiro G (2009) New possibilities with sobolev active contours. Int J Comput Vision 84(2):113–129CrossRefGoogle Scholar
  98. 98.
    Sussman M, Smereka P, Osher SJ (1994) A level set approach for computing solutions to incompressible twophase flow. J Comput Phys 94: 146–159CrossRefGoogle Scholar
  99. 99.
    Tsai A, Wells W, Warfield SK, Willsky A (2004) Level set methods in an EM framework for shape classification and estimation. In: MICCAIGoogle Scholar
  100. 100.
    Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson E, Willsky A (2001) Model–based curve evolution technique for image segmentation. In: IEEE conference on computer vision pattern recognition, Kauai, pp 463–468Google Scholar
  101. 101.
    Tsai A, Yezzi AJ, Willsky AS (2001) Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10(8):1169–1186MATHCrossRefGoogle Scholar
  102. 102.
    Unal G, Krim H, Yezzi AY (2005) Information-theoretic active polygons for unsupervised texture segmentation. Int J Comput Vision 62(3):199–220CrossRefGoogle Scholar
  103. 103.
    Unger M, Pock T, Cremers D, Bischof H (2008) TVSeg – interactive total variation based image segmentation. In: British machine vision conference (BMVC), LeedsGoogle Scholar
  104. 104.
    Wagner TJ (1975) Nonparametric estimates of probability densities. IEEE Trans Inf Theory 21:438–440MATHCrossRefGoogle Scholar
  105. 105.
    Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9): 884–900CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniel Cremers
    • 1
  1. 1.TU MünchenMünchenGermany

Personalised recommendations