Advertisement

Variational Methods in Shape Analysis

  • Martin Rumpf
  • Benedikt Wirth

Abstract

The concept of a shape space is linked both to concepts from geometry and from physics. On one hand, a path-based viscous flow approach leads to Riemannian distances between shapes, where shapes are boundaries of objects that mainly behave like fluids. On the other hand, a state-based elasticity approach induces a (by construction) non-Riemannian dissimilarity measure between shapes, which is given by the stored elastic energy of deformations matching the corresponding objects. The two approaches are both based on variational principles. They are analyzed with regard to different applications, and a detailed comparison is given.

Keywords

Hausdorff Distance Geodesic Distance Deformation Energy Dissimilarity Measure Shape Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The model proposed in Sect. 31.4.2 has been developed in cooperation with Leah Bar and Guillermo Sapiro from the University of Minnesota. Benedikt Wirth has been funded by the Bonn International Graduate School in Mathematics. Furthermore, the work was supported by the Deutsche Forschungsgemeinschaft, SPP 1253 “Optimization with Partial Differential Equations.” Part of Figs. 31-3 31-4 , and 31-19 31-23 have been taken from [83], the results from Figs. 31-6 , 31-8 , and 31-10 31-18 stem from [67, 69].

References and Further Reading

  1. 1.
    Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. B UNIONE MAT ITAL B 6(7): 105–123MathSciNetMATHGoogle Scholar
  2. 2.
    Ball J (1981) Global invertibility of Sobolev functions and the interpenetration of matter. Proc Roy Soc Edinburgh 88A:315–328CrossRefGoogle Scholar
  3. 3.
    Beg MF, Miller MI, Trouvé A, Younes L (February 2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157CrossRefGoogle Scholar
  4. 4.
    Berkels B, Linkmann G, Rumpf M (2009) An SL(2) invariant shape median (submitted)Google Scholar
  5. 5.
    Bornemann F, Deuflhard P (1996) The cascadic multigrid method for elliptic problems. Numer Math 75(2):135–152MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bronstein A, Bronstein M, Kimmel R (2008) Numerical Geometry of Non-Rigid Shapes. Monographs in computer science. Springer, New YorkMATHGoogle Scholar
  7. 7.
    Burger M, Osher SJ (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16(2):263–301MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79MATHCrossRefGoogle Scholar
  9. 9.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2): 266–277MATHCrossRefGoogle Scholar
  10. 10.
    Charpiat G, Faugeras O, Keriven R (2005) Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations Comput Math 5(1):1–58MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Charpiat G, Faugeras O, Keriven R, Maurel P (2006) Distance-based shape statistics. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP 2006), vol 5, pp 925–928Google Scholar
  12. 12.
    Chen SE, Parent RE (1989) Shape averaging and its applications to industrial design. IEEE Comput Graphics Appl 9(1):47–54CrossRefGoogle Scholar
  13. 13.
    Chorin AJ, Marsden JE (1990) A Mathematical introduction to fluid mechanics, vol 4 of Texts in applied mathematics. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39(3):609–618CrossRefGoogle Scholar
  15. 15.
    Ciarlet PG (1988) Three-dimensional elasticity. Elsevier Science B.V., New YorkMATHGoogle Scholar
  16. 16.
    Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61(1):38–59CrossRefGoogle Scholar
  17. 17.
    Cremers D, Kohlberger T, Schnörr C (2003) Shape statistics in kernel space for variational image segmentation. Pattern Recogn 36:1929–1943MATHCrossRefGoogle Scholar
  18. 18.
    Dacorogna B (1989) Direct methods in the calculus of variations. Springer, New YorkMATHGoogle Scholar
  19. 19.
    Dambreville S, Rathi Y, Tannenbaum A (2006) A shape-based approach to robust image segmentation. In: Campilho A, Kamel M (eds) IEEE computer society conference on computer vision and pattern recognition, vol 4141 of LNCS, pp 173–183Google Scholar
  20. 20.
    Delfour MC, Zolésio J (2001) Geometries and shapes: analysis, differential calculus and optimization. Advance in design and control 4. SIAM, PhiladelphiaMATHGoogle Scholar
  21. 21.
    do Carmo MP (1992) Riemannian geometry. Birkhäuser, BostonMATHGoogle Scholar
  22. 22.
    Droske M, Rumpf M (2007) Multi scale joint segmentation and registration of image morphology. IEEE Trans Pattern Recogn Mach Intell 29(12):2181–2194CrossRefGoogle Scholar
  23. 23.
    Dupuis D, Grenander U, Miller M (1998) Variational problems on flows of diffeomorphisms for image matching. Quart Appl Math 56: 587–600MathSciNetMATHGoogle Scholar
  24. 24.
    Eckstein I, Pons JP, Tong Y, Kuo CC, Desbrun M (2007) Generalized surface flows for mesh processing. In: Eurographics symposium on geometry processingGoogle Scholar
  25. 25.
    Elad (Elbaz) A, Kimmel R (2003) On bending invariant signatures for surfaces. IEEE Trans Pattern Anal Mach Intell 25(10):1285–1295CrossRefGoogle Scholar
  26. 26.
    Fletcher P, Lu C, Pizer S, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005CrossRefGoogle Scholar
  27. 27.
    Fletcher PT, Lu C, Joshi S (2003) Statistics of shape via principal geodesic analysis on Lie groups. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1. Los Alamitos, CA, pp 95–101Google Scholar
  28. 28.
    Fletcher T, Venkatasubramanian S, Joshi S (2008) Robust statistics on Riemannian manifolds via the geometric median. In: IEEE conference on computer vision and pattern recognition (CVPR)Google Scholar
  29. 29.
    Fletcher P, Whitaker R (2006) Riemannian metrics on the space of solid shapes. In: Medical image computing and computer assisted intervention – MICCAI 2006Google Scholar
  30. 30.
    Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst H Poincaré 10:215–310Google Scholar
  31. 31.
    Fuchs M, Jüttler B, Scherzer O, Yang H (2009) Shape metrics based on elastic deformations. J Math Imaging Vis 35(1):86–102CrossRefGoogle Scholar
  32. 32.
    Fuchs M, Scherzer O (May 2007) Segmentation of biologic image data with a-priori knowledge. FSP Report, Forschungsschwerpunkt S92 52, Universität Innsbruck, AustriaGoogle Scholar
  33. 33.
    Fuchs M, Scherzer O (2008) Regularized reconstruction of shapes with statistical a priori knowledge. Int J Comput Vis 79(2):119–135CrossRefGoogle Scholar
  34. 34.
    Glaunès J, Qiu A, Miller MI, Younes L (2008) Large deformation diffeomorphic metric curve mapping. Int J Comput Vis 80(3):317–336CrossRefGoogle Scholar
  35. 35.
    Hafner B, Zachariah S, Sanders J (2000) Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia. Med Biol Eng Comput 38:9–16CrossRefGoogle Scholar
  36. 36.
    Hong BW, Soatto S, Vese L (2008) Enforcing local context into shape statistics. Adv Comput Math (online first)Google Scholar
  37. 37.
    Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23 (Suppl 1):151–160CrossRefGoogle Scholar
  38. 38.
    Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30(5):509–541MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kendall DG (1984) Shape manifolds, procrustean metrics, and complex projective spaces. Bull Lond Math Soc 16:81–121MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kilian M, Mitra NJ, Pottmann H (2007) Geometric modeling in shape space. In: ACM Trans Graph 26(64):1–8Google Scholar
  41. 41.
    Klassen E, Srivastava A, Mio W, Joshi SH (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans Pattern Anal Mach Intell 26(3):372–383CrossRefGoogle Scholar
  42. 42.
    Klingenberg WPA (1995) Riemannian geometry. Walter de Gruyter, BerlinMATHCrossRefGoogle Scholar
  43. 43.
    Leventon ME, Grimson WEL, Faugeras O (2002) Statistical shape influence in geodesic active contours. In: 5th IEEE EMBS international summer school on biomedical imagingGoogle Scholar
  44. 44.
    Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299CrossRefGoogle Scholar
  45. 45.
    Liu X, Shi Y, Dinov I, Mio W (2010) A computational model of multidimensional shape. Int J Comput Vis (online first)Google Scholar
  46. 46.
    Manay S, Cremers D, Hong BW, Yezzi AJ, Soatto S (2006) Integral invariants for shape matching. IEEE Trans Pattern Anal Mach Intell 28(10): 1602–1618CrossRefGoogle Scholar
  47. 47.
    Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  48. 48.
    McNeill G, Vijayakumar S (2005) 2d shape classification and retrieval. In: Proceedings of the 19th international joint conference on artificial intelligence, pp 1483–1488Google Scholar
  49. 49.
    Mémoli F (2008) Gromov-Hausdorff distances in euclidean spaces. In: Workshop on non-rigid shape analysis and deformable image alignment (CVPR workshop, NORDIA’08)Google Scholar
  50. 50.
    Mémoli F, Sapiro G (2005) A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations Comput Math 5:313–347MATHCrossRefGoogle Scholar
  51. 51.
    Michor PW, Mumford D (2006) Riemannian geometries on spaces of plane curves. J Eur Math Soc 8:1–48MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Michor PW, Mumford D, Shah J, Younes L (2008) A metric on shape space with explicit geodesics. Rend Lincei Mat Appl 9:25–57MathSciNetGoogle Scholar
  53. 53.
    Miller M, Trouvé A, Younes L (2002) On the metrics and Euler-Lagrange equations of computational anatomy. Annu Rev Biomed Engg 4:375–405CrossRefGoogle Scholar
  54. 54.
    Miller MI, Younes L (2001) Group actions, homeomorphisms, and matching: a general framework. Int J Comput Vis 41(1–2):61–84MATHCrossRefGoogle Scholar
  55. 55.
    Modica L, Mortola S (1977) Un esempio di-\({\Gamma }^{-}\)-convergenza. Boll Un Mat Ital B (5) 14(1): 285–299Google Scholar
  56. 56.
    Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 2:577–685MathSciNetCrossRefGoogle Scholar
  57. 57.
    Nečas J, Čsilhavý M (1991) Multipolar viscous fluids. Quart Appl Math 49(2):247–265MathSciNetMATHGoogle Scholar
  58. 58.
    Ogden RW (1984) Non-linear elastic deformations. Wiley, New YorkGoogle Scholar
  59. 59.
    Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces, vol 153 of Applied mathematical sciences. Springer, New YorkGoogle Scholar
  60. 60.
    Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Pennec X (2006) Left-invariant Riemannian elasticity: a distance on shape diffeomorphisms? In: Mathematical foundations of computational anatomy - MFCA 2006, pp 1–14Google Scholar
  62. 62.
    Pennec X, Stefanescu R, Arsigny V, Fillard P, Ayache N (2005) Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Medical image computing and computer-assisted intervention – MICCAI 2005. LNCS, Palm Springs, pp 943–950Google Scholar
  63. 63.
    Perperidis D, Mohiaddin R, Rueckert D (2005) Construction of a 4d statistical atlas of the cardiac anatomy and its use in classification. In: Duncan J, Gerig G (eds) Medical image computing and computer assisted intervention, vol 3750 of LNCS, pp 402–410CrossRefGoogle Scholar
  64. 64.
    Rathi Y, Dambreville S, Tannenbaum A (2006) Statistical shape analysis using kernel PCA. In: Proceedings of SPIE, vol 6064, pp 425–432Google Scholar
  65. 65.
    Rathi Y, Dambreville S, Tannenbaum A (2006) Comparative analysis of kernel methods for statistical shape learning. In: Beichel R, Sonka M (eds) Computer vision approaches to medical image analysis, vol 4241 of LNCS, pp 96–107CrossRefGoogle Scholar
  66. 66.
    Rueckert D, Frangi AF, Schnabel JA (2003) Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging 22(8):1014–1025CrossRefGoogle Scholar
  67. 67.
    Rumpf M, Wirth B (2009) A nonlinear elastic shape averaging approach. SIAM J Imaging Sci 2(3):800–833MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Rumpf M, Wirth B (2009) An elasticity approach to principal modes of shape variation. In: Proceedings of the second international conference on scale space methods and variational methods in computer vision (SSVM 2009), vol 5567 of LNCS, pp 709–720Google Scholar
  69. 69.
    Rumpf M, Wirth B (2009) An elasticity-based covariance analysis of shapes. Int J Comput Vis (accepted)Google Scholar
  70. 70.
    Schmidt FR, Clausen M, Cremers D (2006) Shape matching by variational computation of geodesics on a manifold. In: Pattern recognition, vol 4174 of LNCS. Springer, Berlin, pp 142–151CrossRefGoogle Scholar
  71. 71.
    Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, CambridgeMATHGoogle Scholar
  72. 72.
    Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The Princeton shape benchmark. In: Proceedings of the shape modeling international, 2004, Genova, pp 167–178Google Scholar
  73. 73.
    Söhn M, Birkner M, Yan D, Alber M (2005) Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys Med Biol 50:5893–5908CrossRefGoogle Scholar
  74. 74.
    Spivak M (1970) A comprehensive introduction to differential geometry, vol 1. Publish or Perish, BostonGoogle Scholar
  75. 75.
    Srivastava A, Jain A, Joshi S, Kaziska D (2006) Statistical shape models using elastic-string representations. In Narayanan P (ed) Asian conference on computer vision, vol 3851 of LNCS. Springer, Heidelberg, pp 612–621Google Scholar
  76. 76.
    Sundaramoorthi G, Yezzi A, Mennucci A (2007) Sobolev active contours. Int J Comput Vis 73(3):345–366CrossRefGoogle Scholar
  77. 77.
    Thorstensen N, Segonne F, Keriven R (2009) Pre-image as karcher mean using diffusion maps: application to shape and image denoising. In: Proceedings of the second international conference on scale space methods and variational methods in computer vision (SSVM 2009), vol 5567 of LNCS, pp 721–732Google Scholar
  78. 78.
    Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, BerlinGoogle Scholar
  79. 79.
    Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson WE, Willsky A (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137–154CrossRefGoogle Scholar
  80. 80.
    Vaillant M, Glaunès J (2005) Surface matching via currents. In: IPMI 2005: Information processing in medical imaging, vol 3565 of LNCS. Springer, Glenwood Springs, pp 381–392Google Scholar
  81. 81.
    Wirth B (2009) Variational methods in shape space. Dissertation, University Bonn, BonnGoogle Scholar
  82. 82.
    Wirth B, Bar L, Rumpf M, Sapiro G (2009) Geodesics in shape space via variational time discretization. In: Proceedings of the 7th international conference on energy minimization methods in computer vision and pattern recognition (EMMCVPR’09), vol 5681 of LNCS, pp 288–302Google Scholar
  83. 83.
    Wirth B, Bar L, Rumpf M, Sapiro G (2010) A continuum mechanical approach to geodesics in shape space (submitted to IJCV)Google Scholar
  84. 84.
    Yezzi AJ, Mennucci A (2005) Conformal metrics and true “gradient flows” for curves. In: ICCV 2005: Proceedings of the 10th IEEE international conference on computer vision, pp 913–919Google Scholar
  85. 85.
    Younes L (April 1998) Computable elastic distances between shapes. SIAM J Appl Math 58(2):565–586MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Younes L, Qiu A, Winslow RL, Miller MI (2008) Transport of relational structures in groups of diffeomorphisms. J Math Imaging Vis 32(1):41–56MathSciNetCrossRefGoogle Scholar
  87. 87.
    Yushkevich P, Fletcher PT, Joshi S, Thalla A, Pizer SM (2003) Continuous medial representations for geometric object modeling in 2d and 3d. Image Vis Comput 21(1):17–27CrossRefGoogle Scholar
  88. 88.
    Zolésio JP (2004) Shape topology by tube geodesic. In: IFIP conference on system modeling and optimization No 21, pp 185–204Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Rumpf
    • 1
  • Benedikt Wirth
    • 2
  1. 1.Bonn UniversityBonnGermany
  2. 2.Bonn UniversityBonnGermany

Personalised recommendations