Advertisement

Shape Spaces

  • Alain Trouvé
  • Laurent Younes

Abstract

This chapter describes a selection of models that have been used to build Riemannian spaces of shapes. It starts with a discussion of the finite dimensional space of point sets (or landmarks) and then provides an introduction to the more challenging issue of building spaces of shapes represented as plane curves. A special attention is devoted to constructions involving quotient spaces, since they are involved in the definition of shape spaces via the action of groups of diffeomorphisms and in the process of identifying shapes that can be related by a Euclidean transformation. The resulting structure is first described via the geometric concept of a Riemannian submersion and then reinterpreted in a Hamiltonian and optimal control framework, via momentum maps. These developments are followed by the description of algorithms and illustrated by numerical experiments.

Keywords

Vector Field Quotient Space Reproduce Kernel Hilbert Space Plane Curf Geodesic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Allassonniere S, Trouve A, Younes L (2005) Geodesic shooting and diffeomorphic matching via textured meshes. In: Proceedings of EMMCVPR, vol 3757 of LNCS. Springer, Berlin/HeidelbergGoogle Scholar
  2. 2.
    Amit Y, Piccioni P (1991) A non-homogeneous markov process for the estimation of gaussian random fields with non-linear observations. Ann Probab 19:1664–1678MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arad N, Dyn N, Reisfeld D, Yeshurun Y (1994) Image warping by radial basis functions: application to facial expressions. CVGIP: Graph Models Image Process 56(2):161–172CrossRefGoogle Scholar
  4. 4.
    Arad N, Reisfeld D (1995). Image warping using few anchor points and radial functions. Comput Graph Forum 14:35–46CrossRefGoogle Scholar
  5. 5.
    Arnold VI (1966) Sur un principe variationnel pour les ecoulements stationnaires des liquides parfaits et ses applications aux problemes de stanbilite non lineaires. J Mecanique 5:29–43Google Scholar
  6. 6.
    Arnold VI (1989) Mathematical methods of classical mechanics. Springer, 1978, New York. Second edition 1989Google Scholar
  7. 7.
    Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Beg MF, Miller MI, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comp Vis 61(2):139–157CrossRefGoogle Scholar
  9. 9.
    Bookstein FL (1989) Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans PAMI 11(6):567–585MATHCrossRefGoogle Scholar
  10. 10.
    Bookstein FL (1991) Morphometric tools for landmark data; geometry and biology. Cambridge University Press, CambridgeMATHGoogle Scholar
  11. 11.
    Camion V, Younes L (2001) Geodesic interpolating splines. In: Figueiredo M, Zerubia J, Jain K (eds) EMMCVPR 2001, vol 2134 of Lecture notes in computer sciences. Springer, Berlin, pp 513–527Google Scholar
  12. 12.
    Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447CrossRefGoogle Scholar
  13. 13.
    Davis BC, Fletcher PT, Bullitt E, Joshi S (December 2007) Population shape regression from random design data. In: IEEE 11th international conference on computer vision (ICCV), pp 1–7Google Scholar
  14. 14.
    Do Carmo MP (1992) Riemannian geometry. Birkäuser, BostonMATHGoogle Scholar
  15. 15.
    Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New YorkMATHGoogle Scholar
  16. 16.
    Duchon J (1977) Interpolation des fonctions de deux variables suivant le principe de la exion des plaques minces. R.A.I.R.O. Analyse Numerique 10:5–12MathSciNetGoogle Scholar
  17. 17.
    Dupuis P, Grenander U, Miller M (1998) Variational problems on flows of diffeomorphisms for image matching. Quart Appl Math 56:587–600MathSciNetMATHGoogle Scholar
  18. 18.
    Dyn N (1989) Interpolation and approximation by radial and related functions. In: Chui CK, Shumaker LL, Ward JD (eds) Approximation theory VI, vol 1. Academic, San Diego, pp 211–234Google Scholar
  19. 19.
    Federer H (1969) Geometric measure theory. Springer, New YorkMATHGoogle Scholar
  20. 20.
    Fletcher PT, Lu C, Pizer M, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005CrossRefGoogle Scholar
  21. 21.
    Fletcher PT, Venkatasubramanian S, Joshi S (2008) Robust statistics on Riemannian manifolds via the geometric median. In: Computer vision and pattern recognition. CVPR 2008. IEEE conference on computer vision, pp 1–8Google Scholar
  22. 22.
    Glaunes J (2005) Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, University of Paris 13, Paris (in French)Google Scholar
  23. 23.
    Glaunes J, Qiu A, Miller MI, Younes L (2008) Large deformation diffeomorphic curve matching. Int J Comput Vis 80(3):317–336CrossRefGoogle Scholar
  24. 24.
    Glaunes J, Trouve A, Younes L (2004) Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: Proceedings of CVPR’04Google Scholar
  25. 25.
    Glaunes J, Trouve A, Younes L (2006) Modeling planar shape variation via Hamiltonian flows of curves. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Springer Birkhauser, pp 335–361Google Scholar
  26. 26.
    Glaunes J, Vaillant M, Miller MI (2004) Landmark matching via large deformation diffeomorphisms on the sphere. J Math Imag Vis 20: 179–200MathSciNetCrossRefGoogle Scholar
  27. 27.
    Grenander U (1993) General pattern theory. Oxford Science Publications, OxfordGoogle Scholar
  28. 28.
    Grenander U, Chow Y, Keenan DM (1991) Hands: a pattern theoretic study of biological shapes. Springer, New YorkGoogle Scholar
  29. 29.
    Grenander U, Keenan DM (1991) On the shape of plane images. Siam J Appl Math 53(4): 1072–1094MathSciNetCrossRefGoogle Scholar
  30. 30.
    Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Quart Appl Math LVI(4):617–694Google Scholar
  31. 31.
    Hamilton RS (1982) The inverse function theorem of Nash and Moser. Bull Am Math Soc (N.S.) 7(1):65–222Google Scholar
  32. 32.
    Helgason S (1978) Differential geometry, lie groups and symmetric spaces. Academic, New YorkMATHGoogle Scholar
  33. 33.
    Holm DD (2008) Geometric mechanics. Imperial College Press, LondonGoogle Scholar
  34. 34.
    Holm DD, Marsden JE, Ratiu TS (1998) The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv Math 137:1–81MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Holm DR, Trouvé A, Younes L (2009) The Euler–Poincaré theory of metamorphosis. Quart Appl Math 67:661–685.MathSciNetMATHGoogle Scholar
  36. 36.
    Joshi S, Miller M (2000) Landmark matching via large deformation diffeomorphisms. IEEE Trans Image Process 9(8):1357–1370MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Joshi SH, Klassen E, Srivastava A, Jermyn I (2007) A novel representation for Riemannian analysis of elastic curves in Rn. In: Proceedings of CVPR’07Google Scholar
  38. 38.
    Jost J (1998) Riemannian geometry and geometric analysis, 2nd edn. Springer, BerlinMATHGoogle Scholar
  39. 39.
    Karcher H (1977) Riemannian center of mass and mollifier smoothing. Comm Pure Appl Math 30(5):509–541MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kendall DG (1984) Shape manifolds, Procrustean metrics and complex projective spaces. Bull Lond Math Soc 16:81–121MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Kendall DG, Barden D, Carne TK, Le H (1999) Shape and shape theory. Wiley, New YorkMATHCrossRefGoogle Scholar
  42. 42.
    Klassen E, Srivastava A, Mio W, Joshi S (2002) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans PAMI 24:375–405Google Scholar
  43. 43.
    Klassen E, Srivastava A, Mio W, Joshi SH (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans Pattern Anal Mach Intell 26(3):372–383CrossRefGoogle Scholar
  44. 44.
    Kriegl A, Michor PW (1997) The convenient setting of global analysis. Mathematical Surveys and Monographs 53. AMS, ProvidenceGoogle Scholar
  45. 45.
    Kriegl A, Michor PW (1997) Regular infinite dimensional lie groups. J Lie Theory 7(1):61–99MathSciNetMATHGoogle Scholar
  46. 46.
    Le H (1995) Mean size-and-shapes and mean shapes: a geometric point of view. Adv Appl Probl 27:44–55MATHCrossRefGoogle Scholar
  47. 47.
    Le H (2004) Estimation of Riemannian barycentres. Lond Math Soc J Comput Math 7: 193–200MATHGoogle Scholar
  48. 48.
    Marques JA, Abrantes AJ (1997) Shape alignment-optimal initial point and pose estimation. Pattern Recogn Lett 18:49–53CrossRefGoogle Scholar
  49. 49.
    Marsden JE (1992) Lectures on geometric mechanics. Cambridge University Press, New YorkGoogle Scholar
  50. 50.
    Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, BerlinMATHGoogle Scholar
  51. 51.
    Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. J Appl Math Phys 30:292–304MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Mennucci A, Yezzi A (2005) Metrics in the space of curves. Technical report, arXiv:mathDG/0412454 v2Google Scholar
  53. 53.
    Micheli M (2008) The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, ProvidenceGoogle Scholar
  54. 54.
    Michor PW, Mumford D (2005) Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math 10:217–245MathSciNetMATHGoogle Scholar
  55. 55.
    Michor PW, Mumford D (2006) Riemannian geometries on spaces of plane curves. J Eur Math Soc 8:1–48MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Michor PW, Mumford D (2007) An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl Comput Harmonic Anal 23(1):74–113MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Image Vis 24(2):209–228CrossRefGoogle Scholar
  58. 58.
    Miller MI, Younes L (2001) Group action, diffeomorphism and matching: a general framework. Int J Comp Vis 41:61–84 (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohiostate. edu/szhu/SCTV99.html)Google Scholar
  59. 59.
    O’Neill B (1966) The fundamental equations of a submersion. Michigan Math J 13:459–469MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Qiu A, Younes L, Miller MI (2008) Intrinsic and extrinsic analysis in computational anatomy. Neuroimage 39(4):1804–1814CrossRefGoogle Scholar
  61. 61.
    Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan K, Csernansky J, Miller MI (2007) Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage 37(3):821–833CrossRefGoogle Scholar
  62. 62.
    Shah J (2008) H 0 type Riemannian metrics on the space of planar curves. Quart Appl Math 66: 123–137MathSciNetMATHGoogle Scholar
  63. 63.
    Sharon E, Mumford D (2006) 2d-shape analysis using conformal mapping. Int J Comput Vis 70(1):55–75CrossRefGoogle Scholar
  64. 64.
    Small C (1996) The statistical theory of shape. Springer, New YorkMATHCrossRefGoogle Scholar
  65. 65.
    Wendworth D (1992) Thompson on growth and form. Dover Publications, 1917, Mineola, Revised edition 1992Google Scholar
  66. 66.
    Trouvé A (1995) Infinite dimensional group action and pattern recognition. Technical report. DMI, Ecole Normale Supérieure (unpublished)Google Scholar
  67. 67.
    Trouvé A (1998) Diffeomorphism groups and pattern matching in image analysis. Int J Comp Vis 28(3):213–221CrossRefGoogle Scholar
  68. 68.
    Trouvé A, Younes L (2000) Diffeomorphic matching in 1d: designing and minimizing matching functionals. In: Vernon D (ed) Proceedings of ECCV 2000Google Scholar
  69. 69.
    Trouvé A, Younes L (2001) On a class of optimal matching problems in 1 dimension. Siam J Contr Opt 39(4):1112–1135CrossRefGoogle Scholar
  70. 70.
    Trouvé A, Younes L (2005) Local geometry of deformable templates. SIAM J Math Anal 37(1):17–59MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Trouvé A, Younes L (2005) Metamorphoses through lie group action. Found Comp Math pp 173–198Google Scholar
  72. 72.
    Trouvé A (1995) Action de groupe de dimension infinie et reconnaissance de formes. C R Acad Sci Paris Ser I Math 321(8):1031–1034MathSciNetMATHGoogle Scholar
  73. 73.
    Twinings C, Marsland S, Taylor C (2002) Measuring geodesic distances on the space of bounded diffeomorphisms. In: British machine vision conferenceGoogle Scholar
  74. 74.
    Vaillant M, Glaunés J (2005) Surface matching via currents. In: Springer (ed), Proceedings of information processing in medical imaging (IPMI 2005), No. 3565 in Lecture notes in computer scienceGoogle Scholar
  75. 75.
    Vaillant M, Miller MI, Trouvé A, Younes L (2004) Statistics on diffeomorphisms via tangent space representations. Neuroimage 23(S1): S161–S169Google Scholar
  76. 76.
    Vialard F-X (2009) Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. Ph.D. thesis, Ecole Normale Supérieure de Cachan. http://tel.archives-ouvertes.fr/tel-00400379/fr/
  77. 77.
    Vialard F-X, Santambrogio F (2009) Extension to bv functions of the large deformation diffeomorphisms matching approach. C R Math 347 (1–2):27–32MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Wahba G (2006) Spline models for observational data. SIAM, PhiladelphiaGoogle Scholar
  79. 79.
    Wang L, Beg MF, Ratnanather JT, Ceritoglu C, Younes L, Morris J, Csernansky J, Miller MI (2006) Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans Med Imaging 26: 462–470CrossRefGoogle Scholar
  80. 80.
    Younes L (1998) Computable elastic distances between shapes. SIAM J Appl Math 58(2): 565–586MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Younes L (1999) Optimal matching between shapes via elastic deformations. Image Vis Comput 17:381–389CrossRefGoogle Scholar
  82. 82.
    Younes L, Michor P, Shah J, Mumford D (2008) A metric on shape spaces with explicit geodesics. Rend Lincei Mat Appl 9:25–57MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alain Trouvé
    • 1
  • Laurent Younes
    • 2
  1. 1.École Normale Supérieure de CachanCachanFrance
  2. 2.John Hopkins UniversityBaltimoreUSA

Personalised recommendations