Skip to main content

Abstract

This chapter describes a selection of models that have been used to build Riemannian spaces of shapes. It starts with a discussion of the finite dimensional space of point sets (or landmarks) and then provides an introduction to the more challenging issue of building spaces of shapes represented as plane curves. A special attention is devoted to constructions involving quotient spaces, since they are involved in the definition of shape spaces via the action of groups of diffeomorphisms and in the process of identifying shapes that can be related by a Euclidean transformation. The resulting structure is first described via the geometric concept of a Riemannian submersion and then reinterpreted in a Hamiltonian and optimal control framework, via momentum maps. These developments are followed by the description of algorithms and illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Allassonniere S, Trouve A, Younes L (2005) Geodesic shooting and diffeomorphic matching via textured meshes. In: Proceedings of EMMCVPR, vol 3757 of LNCS. Springer, Berlin/Heidelberg

    Google Scholar 

  2. Amit Y, Piccioni P (1991) A non-homogeneous markov process for the estimation of gaussian random fields with non-linear observations. Ann Probab 19:1664–1678

    Article  MathSciNet  MATH  Google Scholar 

  3. Arad N, Dyn N, Reisfeld D, Yeshurun Y (1994) Image warping by radial basis functions: application to facial expressions. CVGIP: Graph Models Image Process 56(2):161–172

    Article  Google Scholar 

  4. Arad N, Reisfeld D (1995). Image warping using few anchor points and radial functions. Comput Graph Forum 14:35–46

    Article  Google Scholar 

  5. Arnold VI (1966) Sur un principe variationnel pour les ecoulements stationnaires des liquides parfaits et ses applications aux problemes de stanbilite non lineaires. J Mecanique 5:29–43

    Google Scholar 

  6. Arnold VI (1989) Mathematical methods of classical mechanics. Springer, 1978, New York. Second edition 1989

    Google Scholar 

  7. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404

    Article  MathSciNet  MATH  Google Scholar 

  8. Beg MF, Miller MI, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comp Vis 61(2):139–157

    Article  Google Scholar 

  9. Bookstein FL (1989) Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans PAMI 11(6):567–585

    Article  MATH  Google Scholar 

  10. Bookstein FL (1991) Morphometric tools for landmark data; geometry and biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Camion V, Younes L (2001) Geodesic interpolating splines. In: Figueiredo M, Zerubia J, Jain K (eds) EMMCVPR 2001, vol 2134 of Lecture notes in computer sciences. Springer, Berlin, pp 513–527

    Google Scholar 

  12. Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447

    Article  Google Scholar 

  13. Davis BC, Fletcher PT, Bullitt E, Joshi S (December 2007) Population shape regression from random design data. In: IEEE 11th international conference on computer vision (ICCV), pp 1–7

    Google Scholar 

  14. Do Carmo MP (1992) Riemannian geometry. Birkäuser, Boston

    MATH  Google Scholar 

  15. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    MATH  Google Scholar 

  16. Duchon J (1977) Interpolation des fonctions de deux variables suivant le principe de la exion des plaques minces. R.A.I.R.O. Analyse Numerique 10:5–12

    MathSciNet  Google Scholar 

  17. Dupuis P, Grenander U, Miller M (1998) Variational problems on flows of diffeomorphisms for image matching. Quart Appl Math 56:587–600

    MathSciNet  MATH  Google Scholar 

  18. Dyn N (1989) Interpolation and approximation by radial and related functions. In: Chui CK, Shumaker LL, Ward JD (eds) Approximation theory VI, vol 1. Academic, San Diego, pp 211–234

    Google Scholar 

  19. Federer H (1969) Geometric measure theory. Springer, New York

    MATH  Google Scholar 

  20. Fletcher PT, Lu C, Pizer M, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005

    Article  Google Scholar 

  21. Fletcher PT, Venkatasubramanian S, Joshi S (2008) Robust statistics on Riemannian manifolds via the geometric median. In: Computer vision and pattern recognition. CVPR 2008. IEEE conference on computer vision, pp 1–8

    Google Scholar 

  22. Glaunes J (2005) Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, University of Paris 13, Paris (in French)

    Google Scholar 

  23. Glaunes J, Qiu A, Miller MI, Younes L (2008) Large deformation diffeomorphic curve matching. Int J Comput Vis 80(3):317–336

    Article  Google Scholar 

  24. Glaunes J, Trouve A, Younes L (2004) Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: Proceedings of CVPR’04

    Google Scholar 

  25. Glaunes J, Trouve A, Younes L (2006) Modeling planar shape variation via Hamiltonian flows of curves. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Springer Birkhauser, pp 335–361

    Google Scholar 

  26. Glaunes J, Vaillant M, Miller MI (2004) Landmark matching via large deformation diffeomorphisms on the sphere. J Math Imag Vis 20: 179–200

    Article  MathSciNet  Google Scholar 

  27. Grenander U (1993) General pattern theory. Oxford Science Publications, Oxford

    Google Scholar 

  28. Grenander U, Chow Y, Keenan DM (1991) Hands: a pattern theoretic study of biological shapes. Springer, New York

    Google Scholar 

  29. Grenander U, Keenan DM (1991) On the shape of plane images. Siam J Appl Math 53(4): 1072–1094

    Article  MathSciNet  Google Scholar 

  30. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Quart Appl Math LVI(4):617–694

    Google Scholar 

  31. Hamilton RS (1982) The inverse function theorem of Nash and Moser. Bull Am Math Soc (N.S.) 7(1):65–222

    Google Scholar 

  32. Helgason S (1978) Differential geometry, lie groups and symmetric spaces. Academic, New York

    MATH  Google Scholar 

  33. Holm DD (2008) Geometric mechanics. Imperial College Press, London

    Google Scholar 

  34. Holm DD, Marsden JE, Ratiu TS (1998) The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv Math 137:1–81

    Article  MathSciNet  MATH  Google Scholar 

  35. Holm DR, Trouvé A, Younes L (2009) The Euler–Poincaré theory of metamorphosis. Quart Appl Math 67:661–685.

    MathSciNet  MATH  Google Scholar 

  36. Joshi S, Miller M (2000) Landmark matching via large deformation diffeomorphisms. IEEE Trans Image Process 9(8):1357–1370

    Article  MathSciNet  MATH  Google Scholar 

  37. Joshi SH, Klassen E, Srivastava A, Jermyn I (2007) A novel representation for Riemannian analysis of elastic curves in Rn. In: Proceedings of CVPR’07

    Google Scholar 

  38. Jost J (1998) Riemannian geometry and geometric analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  39. Karcher H (1977) Riemannian center of mass and mollifier smoothing. Comm Pure Appl Math 30(5):509–541

    Article  MathSciNet  MATH  Google Scholar 

  40. Kendall DG (1984) Shape manifolds, Procrustean metrics and complex projective spaces. Bull Lond Math Soc 16:81–121

    Article  MathSciNet  MATH  Google Scholar 

  41. Kendall DG, Barden D, Carne TK, Le H (1999) Shape and shape theory. Wiley, New York

    Book  MATH  Google Scholar 

  42. Klassen E, Srivastava A, Mio W, Joshi S (2002) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans PAMI 24:375–405

    Google Scholar 

  43. Klassen E, Srivastava A, Mio W, Joshi SH (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans Pattern Anal Mach Intell 26(3):372–383

    Article  Google Scholar 

  44. Kriegl A, Michor PW (1997) The convenient setting of global analysis. Mathematical Surveys and Monographs 53. AMS, Providence

    Google Scholar 

  45. Kriegl A, Michor PW (1997) Regular infinite dimensional lie groups. J Lie Theory 7(1):61–99

    MathSciNet  MATH  Google Scholar 

  46. Le H (1995) Mean size-and-shapes and mean shapes: a geometric point of view. Adv Appl Probl 27:44–55

    Article  MATH  Google Scholar 

  47. Le H (2004) Estimation of Riemannian barycentres. Lond Math Soc J Comput Math 7: 193–200

    MATH  Google Scholar 

  48. Marques JA, Abrantes AJ (1997) Shape alignment-optimal initial point and pose estimation. Pattern Recogn Lett 18:49–53

    Article  Google Scholar 

  49. Marsden JE (1992) Lectures on geometric mechanics. Cambridge University Press, New York

    Google Scholar 

  50. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, Berlin

    MATH  Google Scholar 

  51. Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. J Appl Math Phys 30:292–304

    Article  MathSciNet  MATH  Google Scholar 

  52. Mennucci A, Yezzi A (2005) Metrics in the space of curves. Technical report, arXiv:mathDG/0412454 v2

    Google Scholar 

  53. Micheli M (2008) The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence

    Google Scholar 

  54. Michor PW, Mumford D (2005) Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math 10:217–245

    MathSciNet  MATH  Google Scholar 

  55. Michor PW, Mumford D (2006) Riemannian geometries on spaces of plane curves. J Eur Math Soc 8:1–48

    Article  MathSciNet  MATH  Google Scholar 

  56. Michor PW, Mumford D (2007) An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl Comput Harmonic Anal 23(1):74–113

    Article  MathSciNet  MATH  Google Scholar 

  57. Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Image Vis 24(2):209–228

    Article  Google Scholar 

  58. Miller MI, Younes L (2001) Group action, diffeomorphism and matching: a general framework. Int J Comp Vis 41:61–84 (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohiostate. edu/szhu/SCTV99.html)

    Google Scholar 

  59. O’Neill B (1966) The fundamental equations of a submersion. Michigan Math J 13:459–469

    Article  MathSciNet  MATH  Google Scholar 

  60. Qiu A, Younes L, Miller MI (2008) Intrinsic and extrinsic analysis in computational anatomy. Neuroimage 39(4):1804–1814

    Article  Google Scholar 

  61. Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan K, Csernansky J, Miller MI (2007) Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage 37(3):821–833

    Article  Google Scholar 

  62. Shah J (2008) H 0 type Riemannian metrics on the space of planar curves. Quart Appl Math 66: 123–137

    MathSciNet  MATH  Google Scholar 

  63. Sharon E, Mumford D (2006) 2d-shape analysis using conformal mapping. Int J Comput Vis 70(1):55–75

    Article  Google Scholar 

  64. Small C (1996) The statistical theory of shape. Springer, New York

    Book  MATH  Google Scholar 

  65. Wendworth D (1992) Thompson on growth and form. Dover Publications, 1917, Mineola, Revised edition 1992

    Google Scholar 

  66. Trouvé A (1995) Infinite dimensional group action and pattern recognition. Technical report. DMI, Ecole Normale Supérieure (unpublished)

    Google Scholar 

  67. Trouvé A (1998) Diffeomorphism groups and pattern matching in image analysis. Int J Comp Vis 28(3):213–221

    Article  Google Scholar 

  68. Trouvé A, Younes L (2000) Diffeomorphic matching in 1d: designing and minimizing matching functionals. In: Vernon D (ed) Proceedings of ECCV 2000

    Google Scholar 

  69. Trouvé A, Younes L (2001) On a class of optimal matching problems in 1 dimension. Siam J Contr Opt 39(4):1112–1135

    Article  Google Scholar 

  70. Trouvé A, Younes L (2005) Local geometry of deformable templates. SIAM J Math Anal 37(1):17–59

    Article  MathSciNet  MATH  Google Scholar 

  71. Trouvé A, Younes L (2005) Metamorphoses through lie group action. Found Comp Math pp 173–198

    Google Scholar 

  72. Trouvé A (1995) Action de groupe de dimension infinie et reconnaissance de formes. C R Acad Sci Paris Ser I Math 321(8):1031–1034

    MathSciNet  MATH  Google Scholar 

  73. Twinings C, Marsland S, Taylor C (2002) Measuring geodesic distances on the space of bounded diffeomorphisms. In: British machine vision conference

    Google Scholar 

  74. Vaillant M, Glaunés J (2005) Surface matching via currents. In: Springer (ed), Proceedings of information processing in medical imaging (IPMI 2005), No. 3565 in Lecture notes in computer science

    Google Scholar 

  75. Vaillant M, Miller MI, Trouvé A, Younes L (2004) Statistics on diffeomorphisms via tangent space representations. Neuroimage 23(S1): S161–S169

    Google Scholar 

  76. Vialard F-X (2009) Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. Ph.D. thesis, Ecole Normale Supérieure de Cachan. http://tel.archives-ouvertes.fr/tel-00400379/fr/

  77. Vialard F-X, Santambrogio F (2009) Extension to bv functions of the large deformation diffeomorphisms matching approach. C R Math 347 (1–2):27–32

    Article  MathSciNet  MATH  Google Scholar 

  78. Wahba G (2006) Spline models for observational data. SIAM, Philadelphia

    Google Scholar 

  79. Wang L, Beg MF, Ratnanather JT, Ceritoglu C, Younes L, Morris J, Csernansky J, Miller MI (2006) Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans Med Imaging 26: 462–470

    Article  Google Scholar 

  80. Younes L (1998) Computable elastic distances between shapes. SIAM J Appl Math 58(2): 565–586

    Article  MathSciNet  MATH  Google Scholar 

  81. Younes L (1999) Optimal matching between shapes via elastic deformations. Image Vis Comput 17:381–389

    Article  Google Scholar 

  82. Younes L, Michor P, Shah J, Mumford D (2008) A metric on shape spaces with explicit geodesics. Rend Lincei Mat Appl 9:25–57

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Trouvé, A., Younes, L. (2011). Shape Spaces. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_30

Download citation

Publish with us

Policies and ethics