Skip to main content

Gabor Analysis for Imaging

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Introduction

In contrast to classical Fourier analysis, time-frequency analysis is concerned with localized Fourier transforms. Gabor analysis is an important branch of time-frequency analysis. Although significantly different, it shares with the wavelet transform methods the ability to describe the smoothness of a given function in a location-dependent way.

The main tool is the sliding window Fourier transform or short-time Fourier transform (STFT) in the context of audio signals. It describes the correlation of a signal with the time-frequency shifted copies of a fixed function (or window, or atom). Thus, it characterizes a function by its transform over phase space, which is the time-frequency plane (TF-plane) in a musical context, or the location-wavenumber-domain in the context of image processing.

Since the transition from the signal domain to the phase space domain introduces an enormous amount of data redundancy, suitable subsampling of the continuous transform allows for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Ali ST, Antoine J-P, Murenzi R, Vandergheynst P (2004) Two-dimensional wavelets and their relatives. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Assaleh K, Zeevi Y, Gertner I (1991) on the realization of Zak-Gabor representation of images. SPIE 1606:532–552

    Article  Google Scholar 

  3. Bastiaans M (1986) Application of the Wigner distribution function to partially coherent light. J Opt Soc Am 3(8):1227–1238

    Article  Google Scholar 

  4. Bastiaans MJ (1980) Gabor’s expansion of a signal into Gaussian elementary signals. Proc IEEE 68(4):538–539

    Article  Google Scholar 

  5. Bastiaans MJ (1981) A sampling theorem for the complex spectrogram and Gabor’s expansion of a signal in Gaussian elementary signals. Opt Eng 20(4):594–598

    Google Scholar 

  6. Bastiaans MJ (1985) On the sliding-window representation in digital signal processing. IEEE Trans Acoust Speech Signal Process 33(4): 868–873

    Article  Google Scholar 

  7. Bastiaans MJ (1998) Gabor’s signal expansion in optics. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms: theory and applications. Birkhäuser, Boston, pp 427–451, Appl. Numer. Harmon. Anal

    Chapter  Google Scholar 

  8. Bastiaans MJ, van Leest AJ (1998) From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation. IEEE Signal Proc Lett 5(8):203–205

    Article  Google Scholar 

  9. Bastiaans MJ, van Leest AJ (1998) Product forms in Gabor analysis for a quincunx-type sampling geometry. In: Veen J (ed) Proceedings of the CSSP-98, ProRISC/IEEE workshop on circuits, systems and signal processing, Mierlo, 26–17 November 1998. STW, Technology Foundation, Utrecht, pp 23–26

    Google Scholar 

  10. Battle G (1988) Heisenberg proof of the Balian-Low theorem. Lett Math Phys 15(2):175–177

    Article  MathSciNet  Google Scholar 

  11. Ben Arie J, Rao KR (1995) Nonorthogonal signal representation by Gaussians and Gabor functions. IEEE Trans Circuits-II 42(6):402–413

    Article  MATH  Google Scholar 

  12. Ben Arie J, Wang Z (1998) Gabor kernels for affine-invariant object recognition. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms: theory and applications. Birkhauser, Boston

    Google Scholar 

  13. Bölcskei H, Feichtinger HG, Gröchenig K, Hlawatsch F (1996) Discrete-time multi-window Wilson expansions: pseudo frames, filter banks, and lapped transforms. In: Proceedings of the IEEE-SP international symposium on time-frequency and time-scale analysis, Paris, pp 525–528

    Google Scholar 

  14. Bölcskei H, Gröchenig K, Hlawatsch F, Feichtinger HG (1997) Oversampled Wilson expansions. IEEE Signal Proc Lett 4(4):106–108

    Article  Google Scholar 

  15. Bölcskei H, Janssen AJEM (2000) Gabor frames, unimodularity, and window decay. J Fourier Anal Appl 6(3):255–276

    Article  MathSciNet  MATH  Google Scholar 

  16. Christensen O (2003) An introduction to frames and Riesz bases. Applied and numerical harmonic analysis. Birkhäuser, Boston

    Google Scholar 

  17. Christensen O (2008) Frames and bases: an introductory course. Applied and numerical harmonic analysis. Birkhäuser, Basel

    Google Scholar 

  18. Coifman RR, Matviyenko G, Meyer Y (1997) Modulated Malvar-Wilson bases. Appl Comput Harmon Anal 4(1):58–61

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Cristobal and R. Navarro. Blind and adaptive image restoration in the framework of a multiscale Gabor representation. In Time-frequency and time-scale analysis, 1994., Proceedings of the IEEE-SP International Symposium on, pages 306–309, Oct 1994.

    Google Scholar 

  20. Cristobal G, Navarro R (1994) Space and frequency variant image enhancement based on a Gabor representation. Pattern Recognit Lett 15(3):273–277

    Article  MATH  Google Scholar 

  21. Cvetkovic Z, Vetterli M (1998) Oversampled filter banks. IEEE Trans Signal Process 46(5):1245–1255

    Article  MathSciNet  Google Scholar 

  22. Daubechies I, Grossmann A, Meyer Y (1986) Painless nonorthogonal expansions. J Math Phys 27(5):1271–1283

    Article  MathSciNet  MATH  Google Scholar 

  23. Daubechies I (1988) Time-frequency localization operators: a geometric phase space approach. IEEE Trans Inf Theory 34(4):605–612

    Article  MathSciNet  MATH  Google Scholar 

  24. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  MathSciNet  MATH  Google Scholar 

  25. Daubechies I, Jaffard S, Journé JL (1991) A simple Wilson orthonormal basis with exponential decay. SIAM J Math Anal 22:554–573

    Article  MathSciNet  MATH  Google Scholar 

  26. Daubechies I, Landau HJ, Landau Z (1995) Gabor time-frequency lattices and the Wexler-Raz identity. J Fourier Anal Appl 1(4):437–478

    Article  MathSciNet  MATH  Google Scholar 

  27. Daugman JG (1988) Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36(7):1169–1179

    Article  MATH  Google Scholar 

  28. Dubiner Z, Porat (1997) Position-variant filtering in the positionfrequency space: performance analysis and filter design. pp 1–34

    Google Scholar 

  29. Dufaux F, Ebrahimi T, Geurtz A, Kunt M (1991) Coding of digital TV by motion-compensated Gabor decomposition. In: Tescher AG (ed) Applications of Digital Image Processing XIV, Image Compression, Proc. SPIE, 22 July 1991, vol 1567. SPIE, pp 362–379

    Google Scholar 

  30. Dufaux F, Ebrahimi T, Kunt M (1991) Massively parallel implementation for real-time Gabor decomposition. In: Tzou K-H, Koga T (eds) Visual communications and image processing ’91: image processing, Boston, vol 1606 of VLSI implementation and hardware architectures. SPIE, pp 851–864

    Google Scholar 

  31. Dunn D, Higgins WE (1995) Optimal Gabor filters for texture segmentation. IEEE Trans Image Process 4(7):947–964

    Article  Google Scholar 

  32. Ebrahimi T, Kunt M (1991) Image compression by Gabor expansion. Opt Eng 30(7): 873–880

    Article  Google Scholar 

  33. Ebrahimi T, Reed TR, Kunt M (1990) Video coding using a pyramidal gabor expansion. In: Proceedings of visual communications and image processing ’90, vol 1360. SPIE, pp 489–502

    Google Scholar 

  34. Feichtinger HG (2006) Modulation spaces: looking back and ahead. Sampl Theory Signal Image Process 5(2):109–140

    MathSciNet  MATH  Google Scholar 

  35. Feichtinger HG, Gröchenig K (1994) Theory and practice of irregular sampling. In: Benedetto J, Frazier M (eds) Wavelets: mathematics and applications, studies in advanced mathematics. CRC Press, Boca Raton, pp 305–363

    Google Scholar 

  36. Feichtinger HG, Gröchenig K (1989) Banach spaces related to integrable group representations and their atomic decompositions, I. J Funct Anal 86:307–340

    Article  MathSciNet  MATH  Google Scholar 

  37. Feichtinger HG, Gröchenig K, Walnut DF (1992) Wilson bases and modulation spaces. Math Nachr 155:7–17

    Article  MathSciNet  MATH  Google Scholar 

  38. Feichtinger HG, Kaiblinger N (1997) 2D-Gabor analysis based on 1D algorithms. In: Proceedings of the OEAGM-97, Hallstatt

    Google Scholar 

  39. Feichtinger HG, Kozek W, Prinz P, Strohmer T (1996) On multidimensional non-separable Gabor expansions. In: Proceedings of the SPIE: wavelet applications in signal and image processing IV

    Google Scholar 

  40. Feichtinger HG, Kozek W (1998) Quantization of TF lattice-invariant operators on elementary LCA groups. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms. Theory and applications. Applied and numerical harmonic analysis. Birkhäuser, Boston, pp 233–266, 452–488

    Google Scholar 

  41. Feichtinger HG, Kozek W, Luef F (2009) Gabor analysis over finite Abelian groups. Appl Comput Harmon Anal 26:230–248

    Article  MathSciNet  MATH  Google Scholar 

  42. Feichtinger HG, Luef F, Werther T (2007) A guided tour from linear algebra to the foundations of Gabor analysis. In: Gabor and wavelet frames, vol 10 of Lecture notes series, Institute for Mathematical Sciences, National University of Singapore. World Scientific, Hackensack, pp 1–49

    Google Scholar 

  43. Feichtinger HG, Strohmer T, Christensen O (1995) A grouptheoretical approach to Gabor analysis. Opt Eng 34:1697–1704

    Article  Google Scholar 

  44. Folland GB (1989) Harmonic analysis in phase space. Princeton University Press, Princeton

    MATH  Google Scholar 

  45. Gabor D (1946) Theory Commun J IEE 93(26):429–457

    Google Scholar 

  46. Gertner I, Zeevi YY (1991) Image representation with position-frequency localization. In: Acoustics, speech, and signal processing, 1991. ICASSP-91, international conference on, vol 4, pp 2353–2356

    Google Scholar 

  47. Golub G, van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  48. Grafakos L, Sansing C (2008) Gabor frames and directional time frequency analysis. Appl Comput Harmon Anal 25(1):47–67

    Article  MathSciNet  MATH  Google Scholar 

  49. Grigorescu S, Petkov N, Kruizinga P (2002) Comparison of texture features based on Gabor filters. IEEE Trans Image Process 11(10):1160–1167

    Article  MathSciNet  Google Scholar 

  50. Gröchenig K (1998) Aspects of Gabor analysis on locally compact abelian groups. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms: theory and applications. Birkhäuser, Boston, pp 211–231

    Chapter  Google Scholar 

  51. Gröchenig K (2001) Foundations of time-frequency analysis. Birkhäuser, Boston, Appl. Numer. Harmon. Anal

    Google Scholar 

  52. Hoffmann U, Naruniec J, Yazdani A, Ebrahimi T (2008) Face detection using discrete Gabor jets and a probabilistic model of colored image patches. In: Filipe J, Obaidat MS (eds) E-business and telecommunications, ICETE 2008, 26–29 July, revised selected papers, vol 48 of communications in computer and information science. pp 331–344

    Google Scholar 

  53. Janssen AJEM (1981) Gabor representation of generalized functions. J Math Anal Appl 83: 377–394

    Article  MathSciNet  MATH  Google Scholar 

  54. Janssen AJEM (1995) Duality and biorthogonality for Weyl-Heisenberg frames. J Fourier Anal Appl 1(4):403–436

    Article  MathSciNet  MATH  Google Scholar 

  55. Janssen AJEM (1997) From continuous to discrete Weyl-Heisenberg frames through sampling. J Fourier Anal Appl 3(5):583–596

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Kutyniok and T. Strohmer. Wilson bases for general time-frequency lattices. SIAM J. Math. Anal., 37(3):685–711 (electronic), 2005.

    Google Scholar 

  57. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  58. Li S (1999) Discrete multi-Gabor expansions. IEEE Trans Inf Theory 45(6):1954–1967

    Article  MATH  Google Scholar 

  59. Lu Y, Morris J (1996) Fast computation of Gabor functions. Signal Processing Letters, IEEE 3(3):75–78

    Article  Google Scholar 

  60. Malvar HS (1990) Lapped transforms for efficient transform/subband coding. IEEE Trans Acoust Speech Signal Process 38(6):969–978

    Article  Google Scholar 

  61. Navarro R, Portilla J, Tabernero A (1998) Duality between oveatization and multiscale local spectrum estimation. In: Rogowitz BE, Pappas TN (eds) Human vision and electronic imaging III, San Jose, 26 January 1998, vol 3299 of Proc. SPIE. SPIE, Bellingham, pp 306–317

    Google Scholar 

  62. Nestares O, Navarro R, Portilla J, Tabernero A (1998) Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. J Electron Imaging 7(1):166–173

    Article  Google Scholar 

  63. Paukner S (2007) Foundations of Gabor analysis for image processing. Master’s thesis, University of Vienna

    Google Scholar 

  64. Porat M, Zeevi Y (1988) The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans Pattern Anal Mach Intell 10(4):452–468

    Article  MATH  Google Scholar 

  65. Porat M, Zeevi YY (1990) Gram-Gabor approach to optimal image representation. In: Kunt M (ed) Visual communications and image processing ’90: fifth in a series, Proc SPIE, Lausanne, vol 1360. SPIE, pp 1474–1478

    Google Scholar 

  66. Prinz P (1996) Calculating the dual Gabor window for general sampling sets. IEEE Trans Signal Process 44(8):2078–2082

    Article  Google Scholar 

  67. Redding N, Newsam G (1996) Efficient calculation of finite Gabor transforms. IEEE Trans Signal Process 44(2):190–200

    Article  Google Scholar 

  68. Redondo R, Sroubek F, Fischer S, Cristobal G (2009) Multifocus image fusion using the log-Gabor transform and a Multisize Windows technique. Inf Fusion 10(2):163–171

    Article  Google Scholar 

  69. Ron A, Shen Z (1997) Weyl-Heisenberg frames and Riesz bases in L2(Rd). Duke Math J 89(2):237–282

    Article  MathSciNet  MATH  Google Scholar 

  70. Shen L, Bai L, Fairhurst M (2007) Gabor wavelets and general discriminant analysis for face identification and verification. Image Vis Comput 25(5):553–563

    Article  Google Scholar 

  71. Søndergaard PL (2007) Finite discrete Gabor analysis. PhD thesis, Technical University of Denmark

    Google Scholar 

  72. Strohmer T (1997) Numerical algorithms for discrete Gabor expansions. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms: theory and applications. Birkhäuser, Boston, pp 267–294

    Google Scholar 

  73. Subbanna NK, Zeevi YY (2006) Image representation using noncanonical discrete multi-window Gabor frames. In: Visual information engineering, VIE 2006. IET International conference on publication, pp 482–487

    Google Scholar 

  74. Urieli S, Porat M, Cohen N (1998) Optimal reconstruction of images from localized phase. IEEE Trans Image Process 7(6):838–853

    Article  MathSciNet  MATH  Google Scholar 

  75. Vargas A, Campos J, Navarro R (1996) An application of the Gabor multiscale decomposition of an image to pattern recognition. SPIE 2730: 622–625

    Article  Google Scholar 

  76. van Leest AJ, Bastiaans MJ (2000) Gabor’s signal expansion and the Gabor transform on a non-separable time-frequency lattice. J Franklin Inst 337(4):291–301

    Article  MathSciNet  MATH  Google Scholar 

  77. Weldon T, Higgins W, Dunn D (1996) Efficient Gabor filter design for texture segmentation. Pattern Recognit 29(12):2005–2015

    Article  Google Scholar 

  78. Werner D (1997) Funktionalanalysis. (Functional Analysis) 2., Ãœberarb. Au. Springer, Berlin

    Google Scholar 

  79. Wojdyllo P (2007) Modified Wilson orthonormal bases. Sampl Theory Signal Image Process 6(2):223–235

    MathSciNet  MATH  Google Scholar 

  80. Wojdyllo P (2008) Characterization of Wilson systems for general lattices. Int J Wavelets Multiresolut Inf Process 6(2):305–314

    Article  MathSciNet  MATH  Google Scholar 

  81. Wojtaszczyk P (2010) Stability and instance optimality for Gaussian measurements in compressed sensing. Found Comput Math 10:1–13

    Article  MathSciNet  MATH  Google Scholar 

  82. Zeevi YY (2001) Multiwindow Gabor-type representations and signal representation by partial information. In: Byrnes JS (ed) Twentieth century Harmonic analysis – a celebration proceedings of the NATO Advanced Study Institute, II Ciocco, 2–15 July 2000, vol 33 of NATO Sci Ser II. Math Phys Chem, Kluwer, Dordrecht, pp 173–199

    Google Scholar 

  83. Zeevi YY, Zibulski M, Porat M (1998) Multi-window Gabor schemes in signal and image representations. In: Feichtinger HG, Strohmer T (eds) Gabor analysis and algorithms: theory and applications. Birkhäuser, Boston, pp 381–407, Appl. Numer. Harmon. Anal

    Chapter  Google Scholar 

  84. Yang J, Liu L, Jiang T, Fan Y (2003) A modified Gabor filter design method for fingerprint image enhancement. Pattern Recognit Lett 24(12):1805–1817

    Article  Google Scholar 

  85. Zibulski M, Zeevi Y (1993) Matrix algebra approach to Gabortype image representation. In: Haskell BG, Hang H-M (eds) Visual communications and image processing ’93, wavelet, Proc. SPIE, vol 2094, 08 November 1993, SPIE. pp 1010–1020

    Google Scholar 

  86. Zibulski M, Zeevi YY (1994) Frame analysis of the discrete Gaborscheme. IEEE Trans Signal Process 42(4):942–945

    Article  Google Scholar 

  87. Zibulski M, Zeevi YY (1997) Analysis of multiwindow Gabor-type schemes by frame methods. Appl Comput Harmon Anal 4(2):188–221

    Article  MathSciNet  MATH  Google Scholar 

  88. Zibulski M, Zeevi YY (1997) Discrete multiwindow Gabor-type transforms. IEEE Trans Signal Process 45(6):1428–1442

    Article  MATH  Google Scholar 

  89. Zibulski M, Zeevi YY (1998) The generalized Gabor scheme and its application in signal and image representation. In: Signal and image representation in combined spaces, vol 7 of wavelet Anal Appl. Academic, San Diego, pp 121–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Christensen, O., Feichtinger, H.G., Paukner, S. (2011). Gabor Analysis for Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_29

Download citation

Publish with us

Policies and ethics