Local Smoothing Neighborhood Filters

  • Jean-Michel Morel
  • Antoni Buades
  • Tomeu Coll


The neighborhood filter or sigma filter is attributed to J.S. Lee [ 48] (in 1983) but goes back to L. Yaroslavsky and the Sovietic image processing theory [ 76]. This filter is introduced in a denoising framework for the removal of additive white noise:
$$v(\mathbf{x}) = u(\mathbf{x}) + n(\mathbf{x}),$$


Heat Equation Seed Point Bilateral Filter Linear Diffusion Curvature Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Andreu F, Ballester C, Caselles V, Mazon JM (2000) Minimizing total variation flow. Comptes Rendus de l’ Academie des Sciences Series I Mathematics 331(11):867–872MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Arias P, Caselles V, Sappiro G (2009) A variational framework for non-local image inpainting. In: Proceedings of the EMMCVPR. Springer, HeidelbergGoogle Scholar
  3. 3.
    Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3): 183–193CrossRefGoogle Scholar
  4. 4.
    Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer, New YorkMATHGoogle Scholar
  5. 5.
    Bae S, Paris S, Durand F (2006) Two-scale tone management for photographic look. ACM Trans Graphic (TOG) 25(3):645Google Scholar
  6. 6.
    Barash D (2002) A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans Pattern Anal Mach Intell 24:844–847CrossRefGoogle Scholar
  7. 7.
    Bennett EP, Mason JL, McMillan L (2007) Multispectral bilateral video fusion. IEEE Trans Image Process 16(5):1185MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boulanger J, Sibarita JB, Kervrann C, Bouthemy P (2008) Nonparametric regression for patch-based fluorescence microscopy image sequence denoising. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, 2008. ISBI 2008, pp 748–751Google Scholar
  9. 9.
    Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. Int Conf Comput Vis 1:105–112Google Scholar
  10. 10.
    Brailean JC, Kleihorst RP, Efstratiadis S, Katsaggelos AK, Lagendijk RL (1995) Noise reduction filters for dynamic image sequences: a review. Proc IEEE 83(9):1272–1292CrossRefGoogle Scholar
  11. 11.
    Buades A, Coll B, Lisani J, Sbert C (2007) Conditional image diffusion. Inverse Probl Imaging 1(4):593MathSciNetMATHGoogle Scholar
  12. 12.
    Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Buades A, Coll B, Morel JM (2006) Neighborhood filters and PDE’s. Numer Math 105(1):1–34MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Buades A, Coll B, Morel JM (2008) Nonlocal image and movie denoising. Int J Comput Vision 76(2):123–139CrossRefGoogle Scholar
  15. 15.
    Buades A, Coll B, Morel JM, Sbert C (2009) Self-similarity driven color demosaicking. IEEE Trans Image Process 18(6):1192–1202MathSciNetCrossRefGoogle Scholar
  16. 16.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22(1):61–79MATHCrossRefGoogle Scholar
  17. 17.
    Choudhury P, Tumblin J (2005) The trilateral filter for high contrast images and meshes. In: ACM SIGGRAPH 2005 courses, ACM, p 5Google Scholar
  18. 18.
    Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836MathSciNetMATHGoogle Scholar
  19. 19.
    Coifman RR, Donoho DL (1995) Translation-invariant de-noising. Lecture notes in statistics, pp 125–125Google Scholar
  20. 20.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  21. 21.
    Criminisi A, Pérez P, Toyama K (2004) Region filling and object removal by exemplar-based image inpainting. IEEE Trans Image Process 13(9):1200–1212CrossRefGoogle Scholar
  22. 22.
    Danielyan A, Foi A, Katkovnik V, Egiazarian K (2008) Image and video super-resolution via spatially adaptive block-matching filtering. In: Proceedings of international workshop on local and non-local approximation in image processingGoogle Scholar
  23. 23.
    De Bonet JS (1997) Multiresolution sampling procedure for analysis and synthesis of texture images. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley, p 368Google Scholar
  24. 24.
    Delon J, Desolneux A (2009) Flicker stabilization in image sequences. hal.archives-ouvertes.frGoogle Scholar
  25. 25.
    Di Zenzo S (1986) A note on the gradient of a multi-image. Comput Vision Graph 33(1): 116–125CrossRefGoogle Scholar
  26. 26.
    Dong B, Ye J, Osher S, Dinov I (2008) Level set based nonlocal surface restoration. Multiscale Model Simul 7:589MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Durand F, Dorsey J (2002) Fast bilateral filtering for the display of highdynamic-range images. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ACM New York, pp 257–266Google Scholar
  29. 29.
    Ebrahimi M, Vrscay ER (2007) Solving the inverse problem of image zooming using “Self-Examples”. Lecture notes in computer science, vol 4633, p 117CrossRefGoogle Scholar
  30. 30.
    Ebrahimi M, Vrscay ER (2008) Multi-frame super-resolution with no explicit motion estimation. In: Proceedings of the 2008 international conference on image processing, computer vision, and pattern recognitionGoogle Scholar
  31. 31.
    Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: International conference on computer vision, vol 2, Corful, Greece, pp 1033–1038Google Scholar
  32. 32.
    Eisemann E, Durand F (2004) Flash photography enhancement via intrinsic relighting. ACM Trans Graphic (TOG) 23(3):673–678CrossRefGoogle Scholar
  33. 33.
    Elad M, Datsenko D (2007) Example-based regularization deployed to superresolution reconstruction of a single image. Compu J 50:1–16Google Scholar
  34. 34.
    Elmoataz A, Lezoray O, Bougleux S, Ta VT (2008) Unifying local and nonlocal processing with partial difference operators on weighted graphs. In: International workshop on local and non-local approximation in image processingGoogle Scholar
  35. 35.
    Fleishman S, Drori I, Cohen-Or D (2003) Bilateral mesh denoising. ACM Trans Graphic (TOG) 22(3):950–953CrossRefGoogle Scholar
  36. 36.
    Gilboa G, Osher S (2007) Nonlocal linear image regularization and supervised segmentation. Multiscale Model Simul 6(2):595–630MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intel 28(11):1CrossRefGoogle Scholar
  38. 38.
    Grady L, Funka-Lea G (2004) Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Computer vision and mathematical methods in medical and biomedical image analysis, ECCV, pp 230–245Google Scholar
  39. 39.
    Grady LJ (2004) Space-variant computer vision: a graph-theoretic approach. PhD thesis, Boston UniversityGoogle Scholar
  40. 40.
    Guichard F, Morel JM, Ryan R Contrast invariant image analysis and PDEs. Book in preparationGoogle Scholar
  41. 41.
    Harten A, Engquist B, Osher S, Chakravarthy SR (1987) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 71(2):231–303MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Huhle B, Schairer T, Jenke P, Straßer W (2008) Robust non-local denoising of colored depth data. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 1–7Google Scholar
  43. 43.
    Jones TR, Durand F, Desbrun M (2003) Non-iterative, feature-preserving mesh smoothing. ACM Trans Graphic 22(3):943–949CrossRefGoogle Scholar
  44. 44.
    Jung M, Vese LA (2009) Nonlocal variational image deblurring models in the presence of Gaussian or impulse noiseGoogle Scholar
  45. 45.
    Kimia BB, Tannenbaum A, Zucker SW (1992) On the evolution of curves via a function of curvature, I: the classical case. J Math Anal Appl 163(2):438–458MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kimmel R, Malladi R, Sochen N (2000) Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int J Comput Vision 39(2):111–129MATHCrossRefGoogle Scholar
  47. 47.
    Kindermann S, Osher S, Jones PW (2005) Debl- urring and denoising of images by nonlocal functionals. Multiscale Model Simul 4(4):1091–1115MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Lee JS (1983) Digital image smoothing and the sigma filter. Computer Vision Graph 24(2): 255–269CrossRefGoogle Scholar
  49. 49.
    Lezoray O, Ta VT, Elmoataz A (2008) Nonlocal graph regularization for image colorization. In: International conference on pattern recognitionGoogle Scholar
  50. 50.
    Lou Y, Zhang X, Osher S, Bertozzi A (2010) Image recovery via nonlocal operators. J Sci Comput 42(2):185–197MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Mairal J, Elad M, Sapiro G et al (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53MathSciNetCrossRefGoogle Scholar
  52. 52.
    Masnou S (1998) Filtrage et désocclusion d’images par méthodes d’ensembles de niveau. PhD thesis, Ceremade, Universit e Paris-DauphineGoogle Scholar
  53. 53.
    Mignotte M (2008) A non-local regularization strategy for image deconvolution. Pattern Recognit Lett 29(16):2206–2212CrossRefGoogle Scholar
  54. 54.
    Osher S, Rudin LI (1990) Feature-oriented image enhancement using shock filters. SIAM J Numer Anal 27(4):919–940MATHCrossRefGoogle Scholar
  55. 55.
    Ozkan MK, Sezan MI, Tekalp AM (1993) Adaptive motion-compensated filtering of noisy image sequences. IEEE Trans Circuits Syst Video Technol 3(4):277–290CrossRefGoogle Scholar
  56. 56.
    Peng H, Rao R, Messinger DW Spatio-spectral bilateral filters for hyperspectral imagingGoogle Scholar
  57. 57.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Tran PAMI 12(7):629–639CrossRefGoogle Scholar
  58. 58.
    Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. ACM Trans Graphic (TOG) 23(3):664–672CrossRefGoogle Scholar
  59. 59.
    Peyré G (2009) Manifold models for signals and images. Computer Vis Image Underst 113(2): 249–260CrossRefGoogle Scholar
  60. 60.
    Peyré G (2009) Sparse modeling of textures. J Math Imaging Vis 34(1):17–31CrossRefGoogle Scholar
  61. 61.
    Polzehl J, Spokoiny V (2002) Varying coefficient regression modeling by adaptive weights smoothing. Preprint 818Google Scholar
  62. 62.
    Protter M, Elad M, Takeda H, Milanfar P (2009) Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans Image Process 18(1):35–51MathSciNetGoogle Scholar
  63. 63.
    Ramanath R, Snyder WE (2003) Adaptive demosaicking. J Electron Imaging 12:633CrossRefGoogle Scholar
  64. 64.
    Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268MATHCrossRefGoogle Scholar
  65. 65.
    Sapiro G, Ringach DL (1996) Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans Image Process 5(11):1582–1586CrossRefGoogle Scholar
  66. 66.
    Sapiro G, Ringach DL (1996) Anisotropic diffusion of multivalued images with applications tocolor filtering. IEEE Trans Image Process 5(11):1582–1586CrossRefGoogle Scholar
  67. 67.
    Sethian JA (1985) Curvature and the evolution of fronts. Commun Math Phys 101(4):487–499MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  69. 69.
    Smith SM, Brady JM (1997) SUSAN: a new approach to low level image processing. Int J Comput Vision 23(1):45–78CrossRefGoogle Scholar
  70. 70.
    Szlam AD, Maggioni M, Coifman RR (2006) A general framework for adaptive regularization based on diffusion processes on graphs. Yale technichal reportGoogle Scholar
  71. 71.
    Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the sixth international conference on computer vision, 1998, pp 839–846Google Scholar
  72. 72.
    van den Boomgaard R, van de Weijer J (2002) On the equivalence of localmode finding, robust estimation and mean-shift analysis as used in early vision tasks. In: International conference on pattern recognition, vol 16, Citeseer, pp 927–930Google Scholar
  73. 73.
    Weickert J (1998) Anisotropic diffusion in image processing. CiteseerGoogle Scholar
  74. 74.
    Winnemoller H, Olsen SC, Gooch B (2006) Real-time video abstraction. ACM Trans Graphic (TOG) 25(3):1226Google Scholar
  75. 75.
    Wong A, Orchard J (2008) A nonlocal-means approach to exemplar-based inpainting. In: 15th IEEE international conference on image processing, 2008, pp 2600–2603Google Scholar
  76. 76.
    Yaroslavsky LP (1985) Digital picture processing. Springer SecaucusGoogle Scholar
  77. 77.
    Yaroslavsky LP (1996) Local adaptive image restoration and enhancement with the use of DFT and DCT in a running window. In: Proceedings of SPIE, vol 2825, p 2Google Scholar
  78. 78.
    Yaroslavsky LP, Egiazarian KO, Astola JT (2001) Transform domain image restoration methods: review, comparison, and interpretation. In: Proceedings of SPIE, vol 4304, p 155Google Scholar
  79. 79.
    Yatziv L, Sapiro G (2006) Fast image and video colorization using chrominance blending. IEEE Trans Image Process 15(5):1120–1129CrossRefGoogle Scholar
  80. 80.
    Yoshizawa S, Belyaev A, Seidel HP (2006) Smoothing by example: Mesh denoising by averaging with similarity-based weights. In: IEEE international conference on shape modeling and applications, pp 38–44Google Scholar
  81. 81.
    Zhang D, Wang Z (2002) Image information restoration based on longrange correlation. IEEE Trans Circuits Syst Video Technol 12(5):331–341CrossRefGoogle Scholar
  82. 82.
    Zhang X, Burger M, Bresson X, Osher S (2009) Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. UCLA CAM report 09–03Google Scholar
  83. 83.
    Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900CrossRefGoogle Scholar
  84. 84.
    Zhu X, Lafferty J, Ghahramani Z (2003) Semi-supervised learning: from Gaussian fields to gaussian processes. School of Computer Science, Carnegie Mellon UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jean-Michel Morel
    • 1
  • Antoni Buades
    • 2
  • Tomeu Coll
    • 3
  1. 1.École Normale Supérieure de CachanCachanFrance
  2. 2.Ecole PolytechniquePalaiseauFrance
  3. 3.Universitat de les Illes BalearsPalma-Illes BalearsSpain

Personalised recommendations