Total Variation in Imaging

  • V. Caselles
  • A. Chambolle
  • M. Novaga


The use of total variation as a regularization term in imaging problems was motivated by its ability to recover the image discontinuities. This is at the basis of its numerous applications to denoising, optical flow, stereo imaging and 3D surface reconstruction, segmentation, or interpolation to mention some of them. On one hand, we review here the main theoretical arguments that have been given to support this idea. On the other, we review the main numerical approaches to solve different models where total variation appears. We describe both the main iterative schemes and the global optimization methods based on the use of max-flow algorithms. Then, we review the use of anisotropic total variation models to solve different geometric problems and its use in finding a convex formulation of some non-convex total variation problems. Finally, we study the total variation formulation of image restoration.


Convex Body Modulation Transfer Function Image Restoration Total Variation Model Finite Perimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  2. 2.
    Allard WK (2009) Total variation regularization for image denoising: I. Geometric theory. Siam J Math Anal 39(4):1150–1190. Total variation regularization for image denoising: II. Examples. SIAM J Imag Sci 1(4):400–417Google Scholar
  3. 3.
    Almansa A, Ballester C, Caselles V, Haro G (2008) A TV based restoration model with local constraints. J Sci Comput 34:209–236MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Almansa A, Aujol JF, Caselles V, Facciolo G (2009) Irregular to regular sampling, denoising and deconvolution. SIAM J Mult Model Simul 7(4):1574–1608MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Alter F, Caselles V (2009) Uniqueness of the Cheeger set of a convex body. Nonlinear Anal TMA 70:32–44MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Alter F, Caselles V, Chambolle A (2005) Evolution of convex sets in the plane by the minimizing total variation flow. Interfaces Free Boundaries 7:29–53MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Alter F, Caselles V, Chambolle A (2005) A characterization of convex calibrable sets in \({\mathbb{R}}^{N}\). Math Ann 332:329–366MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Amar M, Bellettini G (1994) A notion of total variation depending on a metric with discontinuous coefficients. Ann Inst Henri Poincaré 11:91–133MathSciNetMATHGoogle Scholar
  9. 9.
    Ambrosio L (1997) Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore, PisaMATHGoogle Scholar
  10. 10.
    Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Clarendon, OxfordMATHGoogle Scholar
  11. 11.
    Andreu F, Caselles V, Mazón JM (2004) Parabolic quasilinear equations minimizing linear growth functionals. Progress in mathematics 223. Birkhauser Verlag, BaselGoogle Scholar
  12. 12.
    Andrews HC, Hunt BR (1977) Digital signal processing. Prentice Hall, Englewood CliffsGoogle Scholar
  13. 13.
    Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bellettini G, Caselles V, Novaga M (2002) The total variation flow in \({\mathbb{R}}^{N}\). J Diff Eq 184:475–525MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bellettini G, Caselles V, Novaga M (2005) Explicit solutions of the eigenvalue problem. \(-\mathrm{div}\left (\frac{\mathit{Du}} {\vert \mathit{Du}\vert }\right ) = u\) in \({\mathbb{R}}^{N}\). SIAM J Math Ana 36:1095–1129MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137CrossRefGoogle Scholar
  17. 17.
    Buades A, Coll B, Morel JM (2005) A non local algorithm for image denoising. In: Proceedings of the IEEE conference on CVPR, San Diego, vol 2, pp 60–65Google Scholar
  18. 18.
    Caselles V, Chambolle A, Novaga M (2007) Uniqueness of the Cheeger set of a convex body. Pac J Math 232:77–90MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Caselles V, Chambolle A (2006) Anisotropic curvature-driven flow of convex sets. Non-linear Anal TMA 65:1547–1577MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Caselles V, Chambolle A, Novaga M (2007) The discontinuity set of solutions of the TV denoising problem and some extensions. SIAM Mult Model Simul 6:879–894MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Caselles V, Chambolle A, Novaga M Regularity for solutions of the total variation denoising problem. To appear at Revista Matemtica IberoamericanaGoogle Scholar
  22. 22.
    Caselles V, Facciolo G, Meinhardt E (2009) Anisotropic Cheeger sets and applications. SIAM J Imag Sci 2(4):1211–1254MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79MATHCrossRefGoogle Scholar
  24. 24.
    Chambolle A, Lions PL (1997) Image recovery via total variation minimization and related problems. Numer Math 76:167–188MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89–97MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chambolle A (2004) An algorithm for mean curvature motion. Interfaces Free Boundaries 6:195–218MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Chambolle A (2005) Total variation minimization and a class of binary MRF models. In: Rangarajan A, Vemuri BC, Yuille AL (eds) 5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2005, St. Augustine, FL, USA, November 9–11, 2005, Proceedings, vol 3757 of Lecture Notes in Computer Science, pp 136–152. SpringerGoogle Scholar
  28. 28.
    Chambolle A, Darbon J (2009) On total variation minimization and surface evolution using parametric maximum flows. Int J Comp Vision 84(3):288–307CrossRefGoogle Scholar
  29. 29.
    Chambolle A, Cremers D, Pock T (2008) A convex approach for computing minimal partitions. Peprint R.I. 649, CMA Ecole PolytechniqueGoogle Scholar
  30. 30.
    Chan TF, Golub GH, Mulet P (1999) A nonlinear primal-dual method for total variation based image restoration. SIAM J Sci Comput 20: 1964–1977MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Chan TF, Esedoglu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising methods. SIAM J Appl Math 66:1632–1648MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277MATHCrossRefGoogle Scholar
  33. 33.
    Darbon J, Sigelle M (2006) Image restoration with discrete constrained total variation part I: Fast and exact optimization. J Math Imaging Vis 26(3):261–276MathSciNetCrossRefGoogle Scholar
  34. 34.
    De Giorgi E, Ambrosio L (1988) Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad Naz Lincei Rend Cl Sci Mat Fis Natur s 8(82):199–210Google Scholar
  35. 35.
    De Giorgi E, Carriero M, Leaci A (1989) Existence theorem for a minimum problem with free discontinuity set. Arch Rational Mech Anal 108(3):195–218MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Demoment G (1989) Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans Acoust Speech Signal Process 37(12):2024–2036CrossRefGoogle Scholar
  37. 37.
    Durand S, Malgouyres F, Rougé B (2000) Image deblurring, spectrum interpolation and application to satellite imaging. ESAIM Control Optim Calc Var 5:445–475MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Eisner MJ, Severance DG (1976) Mathematical techniques for efficient record segmentation in large shared databases. J Assoc Comput Mach 23(4):619–635MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Esser E, Zhang X, Chan T (2009) A general framework for a class of first order primal-dual algorithms for tv minimization. CAM Reports 09-67, UCLA, Center for Applied MathematicsGoogle Scholar
  40. 40.
    Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric maximum flow algorithm and applications. SIAM J Comput 18:30–55MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Goldfarb D, Yin Y (2007) Parametric maximum flow algorithms for fast total variation minimization. Technical report, Rice UniversityGoogle Scholar
  42. 42.
    Gousseau Y, Morel JM (2001) Are natural images of bounded variation? SIAM J Math Anal 33: 634–648MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc B 51:271–279Google Scholar
  44. 44.
    Hochbaum DS (2001) An efficient algorithm for image segmentation, Markov random fields and related problems. J ACM 48(4):686–701; electronicGoogle Scholar
  45. 45.
    Kaipio JP, Kolehmainen V, Somersalo E, Vauhkonen M (2000) Statistical inversion and Monte-Carlo sampling methods in electrical impedance tomography. Inverse Prob 16:1487–1522MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kaipio JP, Somersalo E (2005) Statistical and computational inverse problems. Applied mathematical sciences, vol 160. Springer, New YorkGoogle Scholar
  47. 47.
    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1996) Conformal curvature flows: from phase transitions to active vision. Arch Rat Mech Anal 134:275–301MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Kolehmainen V, Siltanen S, Järvenpää S, Kaipio JP, Koistinen P, Lassas M, Pirttilä J, Somersalo E (2003) Statistical inversion for X-ray tomography with few radiographs II: Application to dental radiology. Phys Med Biol 48:14651490CrossRefGoogle Scholar
  49. 49.
    Kolmogorov V, Boykov Y, Rother C (2007) Applications of parametric maxflow in computer vision. In: Proceedings of the IEEE 11th international conference on computer vision (ICCV 2007), pp 1–8Google Scholar
  50. 50.
    Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 2(26): 147–159CrossRefGoogle Scholar
  51. 51.
    Korevaar N (1983) Capillary surface convexity above convex domains. Indiana Univ Math J 32:73–82MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Lassas M, Siltanen S (2004) Can one use total variation prior for edge-preserving Bayesian inversion? Inverse Prob 20(5):1537–1563MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Louchet C, Moisan L (2008) Total variation denoising using posterior expectation. In: Proceedings of the European signal processing conference (EUSIPCO), Lausanne, August 2008Google Scholar
  54. 54.
    Meyer Y (2001) Oscillating patterns in image processing and nonlinear evolution equations, The fifteenth Dean Jacqueline B. Lewis memorial lectures. University Lecture Series, 22, American Mathematical Society, ProvidenceGoogle Scholar
  55. 55.
    Nesterov Y (2005) Smooth minimization of nonsmooth functions. Math Prog Ser A 103: 127–152MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Nikolova M (2000) Local strong homogeneity of a regularized estimator. SIAM J Appl Math 61:633–658MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Picard JC, Ratliff HD (1975) Minimum cuts and related problems. Networks 5(4):357–370MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Pock T, Schoenemann T, Cremers D, Bischof H (2008) A convex formulation of continuous multi-label problems. In: European conference on computer vision (ECCV), Marseille, France, October 2008Google Scholar
  59. 59.
    Rougé B (1998) Théorie de l’echantillonage et satellites d’observation de la terre. Analyse de Fourier et traitement d’images, Journées X-UPSGoogle Scholar
  60. 60.
    Rudin L, Osher S (1994) Total variation based image restoration with free local constraints. In: Proceedings of the IEEE ICIP-94, vol 1, Austin, pp 31–35Google Scholar
  61. 61.
    Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268MATHCrossRefGoogle Scholar
  62. 62.
    Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2008) Variational methods in imaging. Applied mathematical sciences, vol 167. Springer, New YorkGoogle Scholar
  63. 63.
    Vese L (2001) A study in the BV space of a denoising-deblurring variational problem. Appl Math Optim 44:131–161MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Zhao HK, Osher S, Merriman B, Kang M (2000) Implicit and non-parametric shape reconstruction from unorganized points using variational level set method. Comput Vis Image Und 80(3):295–314MATHCrossRefGoogle Scholar
  65. 65.
    Zhu M, Chan TF (2008) An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report number 08-34, 2008Google Scholar
  66. 66.
    Ziemer WP (1989) Weakly differentiable functions, GTM 120. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. Caselles
  • A. Chambolle
  • M. Novaga

There are no affiliations available

Personalised recommendations