Mathematics of Photoacoustic and Thermoacoustic Tomography

  • Peter Kuchment
  • Leonid Kunyansky


The chapter surveys the mathematical models, problems, and algorithms of the thermoacoustic tomography (TAT) and photoacoustic tomography (PAT). TAT and PAT represent probably the most developed of the several novel “hybrid” methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.


Time Reversal Inversion Formula Reconstruction Formula Forward Operator Unique Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of both authors was partially supported by the NSF DMS grant 0908208. The first author was also supported by the NSF DMS grant 0604778 and by the KAUST grant KUS-CI-016-04 through the IAMCS. The work of the second author was partially supported by the DOE grant DE-FG02-03ER25577. The authors express their gratitude to NSF, DOE, KAUST, and IAMCS for the support.

References and Further Reading

  1. 1.
    Agranovsky M, Berenstein C, Kuchment P (1996) Approximation by spherical waves in L p-spaces. J Geom Anal 6(3):365–383MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Agranovsky M, Finch D, Kuchment P (2009) Range conditions for a spherical mean transform. Inverse Probl Imaging 3(3):373–38MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Agranovsky M, Kuchment P (2007) Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl 23:2089–2102MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Agranovsky M, Kuchment P, Kunyansky L (2009) On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography, Chapter 8. In: Wang LH (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton, pp 89–101CrossRefGoogle Scholar
  5. 5.
    Agranovsky M, Kuchment P, Quinto ET (2007) Range descriptions for the spherical mean Radon transform. J Funct Anal 248: 344–386MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Agranovsky M, Nguyen L (2009) Range conditions for a spherical mean transform and global extension of solutions of Darboux equation. Preprint arXiv:0904.4225 To appear in J d’Analyse MathematiqueGoogle Scholar
  7. 7.
    Agranovsky M, Quinto ET (1996) Injectivity sets for the Radon transform over circles and complete systems of radial functions. J Funct Anal 139:383–414MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ambartsoumian G, Kuchment P (2005) On the injectivity of the circular radon transform. Inverse Probl 21:473–485MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ambartsoumian G, Kuchment P (2006) A range description for the planar circular Radon transform. SIAM J Math Anal 38(2):681–692MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ammari H (2008) An Introduction to mathematics of emerging biomedical imaging. Springer, BerlinMATHGoogle Scholar
  11. 11.
    Ammari H, Bonnetier E, Capdebosq Y, Tanter M, Fink M (2008) Electrical impedance tomography by elastic deformation. SIAM J Appl Math 68(6):1557–1573MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ammari H, Bossy E, Jugnon V, Kang H. Quantitative photo-acoustic imaging of small absorbers. SIAM Review, to appear Google Scholar
  13. 13.
    Anastasio MA, Zhang J, Modgil D, Rivière PJ (2007) Application of inverse source concepts to photoacoustic tomography Inverse Probl 23:S21–S35MATHGoogle Scholar
  14. 14.
    Anastasio MA, Zhang J, Sidky EY, Zou Z, Dan X, Pan X (2005) Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture. IEEE Trans Med Imaging 24(9):1100–1112CrossRefGoogle Scholar
  15. 15.
    Anastasio M, Zhang J, Pan X, Zou Y, Ku G, Wang LV (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans Med Imaging 24:199–210CrossRefGoogle Scholar
  16. 16.
    Andersson L-E (1988) On the determination of a function from spherical averages. SIAM J Math Anal 19(1):214–232MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Andreev V, Popov D et al (2002) Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. Proc SPIE 4618:137–145CrossRefGoogle Scholar
  18. 18.
    Bal G, Jollivet A, Jugnon V (2010) Inverse transport theory of photoacoustics. Inverse Probl 26:025011, doi:10.1088/0266-5611/26/2/025011MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 20: 305–324Google Scholar
  20. 20.
    Beylkin G (1984) The inversion problem and applications of the generalized Radon transform. Commun Pur Appl Math 37:579–599MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Bowen T (1981) Radiation-induced thermoacoustic soft tissue imaging. Proc IEEE Ultrason Symp 2:817–822Google Scholar
  22. 22.
    Burgholzer P, Grün H, Haltmeier M, Nuster R, Paltauf G (2007) Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors using time reversal. In: Proceedings of the SPIE number 6437–75 Photonics West, BIOS 2007, San JoseGoogle Scholar
  23. 23.
    Burgholzer P, Hofer C, Paltauf G, Haltmeier M, Scherzer O (2005) Thermoacoustic tomography with integrating area and line detectors. IEEE Trans Ultrason Ferroelectr Freq Control 52(9):1577–1583CrossRefGoogle Scholar
  24. 24.
    Burgholzer P, Hofer C, Matt GJ, Paltauf G, Haltmeier M, Scherzer O (2006) Thermoacoustic tomography using a fiber-based Fabry–Perot interferometer as an integrating line detector. Proc SPIE 6086:434–442Google Scholar
  25. 25.
    Clason C, Klibanov M (2007) The quasi-reversibility method in thermoacoustic tomography in a heterogeneous medium. SIAM J Sci Comput 30:1–23MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Colton D, Paivarinta L, Sylvester J (2007) The interior transmission problem. Inverse Probl 1(1):13–28MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Courant R, Hilbert D (1962) Methods of mathematical physics. Partial differential equations, vol II. Interscience, New YorkGoogle Scholar
  28. 28.
    Cox BT, Arridge SR, Beard PC (2007) Photoacoustic tomography with a limited aperture planar sensor and a reverberant cavity. Inverse Probl 23:S95–S112MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Cox BT, Arridge SR, Beard PC (2009) Estimating chromophore distributions from multiwavelength photoacoustic images. J Opt Soc Am A 26:443–455CrossRefGoogle Scholar
  30. 30.
    Cox BT, Laufer JG, Beard PC (2009) The challenges for quantitative photoacoustic imaging. Proc SPIE 7177:717713CrossRefGoogle Scholar
  31. 31.
    Diebold GJ, Sun T, Khan MI (1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett 67(24):3384–3387CrossRefGoogle Scholar
  32. 32.
    Egorov Yu V, Shubin MA (1992) Partial differential equations I. Encyclopaedia of mathematical sciences, vol 30. Springer, Berlin, pp 1–259Google Scholar
  33. 33.
    Faridani A, Ritman EL, Smith KT (1992) Local tomography. SIAM J Appl Math 52(4):459–484MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Fawcett JA (1985) Inversion of n-dimensional spherical averages. SIAM J Appl Math 45(2):336–341MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Finch D, Haltmeier M, Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J Appl Math 68(2):392–412MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Finch D, Patch S, Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35(5):1213–1240MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Finch D, Rakesh (2006) Range of the spherical mean value operator for functions supported in a ball. Inverse Probl 22:923–938MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Finch D, Rakesh. Recovering a function from its spherical mean values in two and three dimensions. In [94], pp 77–88Google Scholar
  39. 39.
    Finch D, Rakesh (2007) The spherical mean value operator with centers on a sphere. Inverse Probl 23(6):S37–S50MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Gebauer B, Scherzer O (2009) Impedance-acoustic tomography. SIAM J Appl Math 69(2):565–576MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gelfand I, Gindikin S, Graev M (2003) Selected topics in integral geometry. Transl Math Monogr vol 220, American Mathematical Society, ProvidenceGoogle Scholar
  42. 42.
    Grün H, Haltmeier M, Paltauf G, Burgholzer P (2007) Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. Proc SPIE 6631:663107CrossRefGoogle Scholar
  43. 43.
    Haltmeier M, Burgholzer P, Paltauf G, Scherzer O (2004) Thermoacoustic computed tomography with large planar receivers. Inverse Probl 20:1663–1673MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G (2007) Thermoacoustic tomography and the circular radon transform: exact inversion formula. Math Mod Methods Appl Sci 17(4):635–655MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Helgason S (1980) The Radon transform. Birkh äuser, BaselMATHGoogle Scholar
  46. 46.
    Hörmander L (1983) The analysis of linear partial differential operators, vols 1 and 2. Springer, New YorkCrossRefGoogle Scholar
  47. 47.
    Hristova Y (2009) Time reversal in thermoacoustic tomography: error estimate. Inverse Probl 25:1–14MathSciNetCrossRefGoogle Scholar
  48. 48.
    Hristova Y, Kuchment P, Nguyen L (2008) On reconstruction and time reversal in thermoacoustic tomography in homogeneous and non-homogeneous acoustic media. Inverse Probl 24:055006MathSciNetCrossRefGoogle Scholar
  49. 49.
    Isakov V (2005) Inverse problems for partial differential equations, 2nd edn. Springer, BerlinGoogle Scholar
  50. 50.
    Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51:6437–6448CrossRefGoogle Scholar
  51. 51.
    John F (1971) Plane waves and spherical means applied to partial differential equations. Dover, New YorkGoogle Scholar
  52. 52.
    Kowar R, Scherzer O, Bonnefond X. Causality analysis of frequency dependent wave attenuation, preprint arXiv:0906.4678Google Scholar
  53. 53.
    Kruger RA, Liu P, Fang YR, Appledorn CR (1995) Photoacoustic ultrasound (PAUS)reconstruction tomography. Med Phys 22:1605–1609CrossRefGoogle Scholar
  54. 54.
    Kuchment P, Lancaster K, Mogilevskaya L (1995) On local tomography. Inverse Probl 11:571–589MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Kuchment P, Kunyansky L (2008) Mathematics of thermoacoustic tomography. Eur J Appl Math 19(02):191–224MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Kuchment P, Kunyansky L, Synthetic focusing in ultrasound modulated tomography. Inverse Probl Imaging, to appearGoogle Scholar
  57. 57.
    Kunyansky L (2007) Explicit inversion formulae for the spherical mean Radon transform. Inverse probl 23:737–783CrossRefGoogle Scholar
  58. 58.
    Kunyansky L (2007) A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl 23:S11–S20MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Kunyansky L (2008) Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm. Inverse Probl 24(5):055021MathSciNetCrossRefGoogle Scholar
  60. 60.
    Lin V, Pinkus A (1994) Approximation of multivariate functions. In: Dikshit HP, Micchelli CA (eds) Advances in computational mathematics. World Scientific, Singapore, pp 1–9Google Scholar
  61. 61.
    Louis AK, Quinto ET (2000) Local tomographic methods in Sonar. In: Surveys on solution methods for inverse problems. Springer, Vienna, pp 147–154CrossRefGoogle Scholar
  62. 62.
    Maslov K, Zhang HF, Wang LV (2007) Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Inverse Probl 23:S113–S122MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Natterer F (1986) The mathematics of computerized tomography. Wiley, New YorkMATHGoogle Scholar
  64. 64.
    Nguyen L (2009) A family of inversion formulas in thermoacoustic tomography. Inverse Probl Imaging 3(4):649–675MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Nguyen LV. On singularities and instability of reconstruction in thermoacoustic tomography, preprint arXiv:0911.5521v1Google Scholar
  66. 66.
    Norton SJ (1980) Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution. J Acoust Soc Am 67:1266–1273MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Norton SJ, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28:200–202CrossRefGoogle Scholar
  68. 68.
    Olafsson G, Quinto ET (eds) The radon transform, inverse problems, and tomography. American Mathematical Society Short Course January 3–4, 2005, Atlanta, Georgia, Proc Symp Appl Math, vol 63, AMS, RI, 2006Google Scholar
  69. 69.
    Oraevsky AA, Jacques SL, Esenaliev RO, Tittel FK (1994) Laser-based ptoacoustic imaging in biological tissues. Proc SPIE 2134A:122–128Google Scholar
  70. 70.
    Palamodov VP (2004) Reconstructive integral geometry. Birkhäuser, BaselMATHCrossRefGoogle Scholar
  71. 71.
    Palamodov V (2007) Remarks on the general Funk–Radon transform and thermoacoustic tomography. Preprint arxiv: math.AP/0701204Google Scholar
  72. 72.
    Paltauf G, Nuster R, Burgholzer P (2009) Weight factors for limited angle photoacoustic tomography. Phys Med Biol 54:3303–3314CrossRefGoogle Scholar
  73. 73.
    Paltauf G, Nuster R, Haltmeier M, Burgholzer P (2007) Thermoacoustic computed tomography using a Mach–Zehnder interferometer as acoustic line detector. Appl Opt 46(16):3352–3358CrossRefGoogle Scholar
  74. 74.
    Paltauf G, Nuster R, Haltmeier M, Burgholzer P (2007) Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors. Inverse Probl 23:S81–S94MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Paltauf G, Viator JA, Prahl SA, Jacques SL (2002) Iterative reconstruction algorithm for optoacoustic imaging J. Acoust Soc Am 112(4):1536–1544CrossRefGoogle Scholar
  76. 76.
    Paltauf G, Nuster R, Burgholzer P (2009) Characterization of integrating ultrasound detectors for photoacoustic tomography. J Appl Phys 105:102026CrossRefGoogle Scholar
  77. 77.
    Passechnik VI, Anosov AA, Bograchev KM (2000) Fundamentals and prospects of passive thermoacoustic tomography. Crit Rev Biomed Eng 28(3–4):603–640Google Scholar
  78. 78.
    Patch SK (2004) Thermoacoustic tomography – consistency conditions and the partial scan problem. Phys Med Biol 49:1–11CrossRefGoogle Scholar
  79. 79.
    Patch S (2009) Photoacoustic or thermoacoustic tomography: consistency conditions and the partial scan problem, in [94], 103–116Google Scholar
  80. 80.
    Patch SK, Haltmeier M (2006) Thermoacoustic tomography – ultrasound attenuation artifacts. IEEE Nucl Sci Sym Conf 4:2604–2606Google Scholar
  81. 81.
    Popov DA, Sushko DV (2002) A parametrix for the problem of optical-acoustic tomography. Dokl Math 65(1):19–21MATHGoogle Scholar
  82. 82.
    Popov DA, Sushko DV (2004) Image restoration in optical-acoustic tomography. Probl Inform Transm 40(3):254–278MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    La Rivière PJ, Zhang J, Anastasio MA (2006) Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt Lett 31(6):781–783CrossRefGoogle Scholar
  84. 84.
    Shubin MA (2001) Pseudodifferential operators and spectral theory. Springer, BerlinMATHCrossRefGoogle Scholar
  85. 85.
    Stefanov P, Uhlmann G (2008) Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am J Math 130(1):239–268MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Stefanov P, Uhlmann G (2009) Thermoacoustic tomography with variable sound speed. Inverse Probl 25:075011MathSciNetCrossRefGoogle Scholar
  87. 87.
    Steinhauer D. A uniqueness theorem for thermoacoustic tomography in the case of limited boundary data, preprint arXiv:0902.2838Google Scholar
  88. 88.
    Tam AC (1986) Applications of photoacoustic sensing techniques. Rev Mod Phys 58(2):381–431CrossRefGoogle Scholar
  89. 89.
    Tuchin VV (ed) (2002) Handbook of optical biomedical diagnostics. SPIE, BellinghamGoogle Scholar
  90. 90.
    Vainberg B (1975) The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t → of the solutions of nonstationary problems. Russ Math Surv 30(2):1–58MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Vainberg B (1982) Asymptotics methods in the equations of mathematical physics. Gordon & Breach, New YorkGoogle Scholar
  92. 92.
    Vo-Dinh T (ed) (2003) Biomedical photonics handbook. CRC Press, Boca RatonGoogle Scholar
  93. 93.
    Wang K, Anastasio MA. Photoacoustic and thermoacoustic tomography: image formation principles, Chapter 28 in this volumeGoogle Scholar
  94. 94.
    Wang L (ed) (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca RatonGoogle Scholar
  95. 95.
    Wang LV, Wu H (2007) Biomedical optics. Principles and imaging. Wiley, New YorkGoogle Scholar
  96. 96.
    Xu M, Wang L-HV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822CrossRefGoogle Scholar
  97. 97.
    Xu M, Wang L-HV (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E71:016706CrossRefGoogle Scholar
  98. 98.
    Xu Y, Feng D, Wang L-HV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: I Planar geometry. IEEE Trans Med Imag 21:823–828CrossRefGoogle Scholar
  99. 99.
    Xu Y, Xu M, Wang L-HV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography: II Cylindrical geometry. IEEE Trans Med Imaging 21:829–833CrossRefGoogle Scholar
  100. 100.
    Xu Y, Wang L, Ambartsoumian G, Kuchment P (2004) Reconstructions in limited view thermoacoustic tomography. Med Phys 31(4):724–733CrossRefGoogle Scholar
  101. 101.
    Xu Y, Wang L, Ambartsoumian G, Kuchment P (2009) Limited view thermoacoustic tomography, Ch. 6. In: Wang LH (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton, pp 61–73Google Scholar
  102. 102.
    Zangerl G, Scherzer O, Haltmeier M (2009) Circular integrating detectors in photo and thermoacoustic tomography. Inverse Probl Sci Eng 17(1):133–142MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Yuan Z, Zhang Q, Jiang H (2006) Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. Opt Express 14(15):6749CrossRefGoogle Scholar
  104. 104.
    Zhang J, Anastasio MA (2006) Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. Proc SPIE 6086:608619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peter Kuchment
    • 1
  • Leonid Kunyansky
    • 2
  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations