Photoacoustic and Thermoacoustic Tomography: Image Formation Principles

  • Kun Wang
  • Mark A. Anastasio


Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a rapidly emerging imaging technique that holds great promise for biomedical imaging. PAT is a hybrid imaging technique, and can be viewed either as an ultrasound mediated electromagnetic modality or an ultrasound modality that exploits electromagnetic-enhanced image contrast. In this chapter, we provide a review of the underlying imaging physics and contrast mechanisms in PAT. Additionally, the imaging models that relate the measured photoacoustic wavefields to the sought-after optical absorption distribution are described in their continuous and discrete forms. The basic principles of image reconstruction from discrete measurement data are presented, which includes a review of methods for modeling the measurement system response.


Object Representation Imaging Model Image Reconstruction Algorithm Acoustic Attenuation Iterative Image Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Anastasio MA, Zhang J, Modgil D, La Riviere PJ (2007) Application of inverse source concepts to photoacoustic tomography. Inverse Prob 23(6):S21–S35MATHCrossRefGoogle Scholar
  2. 2.
    Anastasio MA, Zhang J, Sidky EY, Zou Y, Xia D, Pan X (2005) Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture. IEEE Trans Med Imaging 24:1100–1112CrossRefGoogle Scholar
  3. 3.
    Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities. In: SPIE, vol 5750. SPIE, pp 298–304Google Scholar
  4. 4.
    Anastasio MA, Zhang J (2006) Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures. In: Proceedings of the SPIE conference, vol 6086. p 36Google Scholar
  5. 5.
    Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneties. In: Proceedings of the SPIE medical imaging conference, vol 5750. pp 298–304Google Scholar
  6. 6.
    Anastasio MA, Zhang J, Pan X, Zou Y, Keng G, Wang LV (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans Med Imaging 24:199–210CrossRefGoogle Scholar
  7. 7.
    Anastasio MA, Zou Y, Pan X (2002) Reflectivity tomography using temporally truncated data. In: IEEE EMBS/BMES conference proceedings, vol 2. IEEE, pp 921–922Google Scholar
  8. 8.
    Axelsson O (1994) Iterative solution methods. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. 9.
    Barrett H, Myers K (2004) Foundations of image science. Wiley series in pure and applied optics. Wiley, HobokenGoogle Scholar
  10. 10.
    Beard PC, Laufer JG, Cox B, Arridge SR (2009) Quantitative photoacoustic imaging: measurement of absolute chromophore concentrations for physiological and molecular imaging. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Bertero M, Boccacci P (1998) Inverse problems in imaging. Institute of Physics Publishing, BristolMATHCrossRefGoogle Scholar
  12. 12.
    Cheong W, Prahl S, Welch A (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185CrossRefGoogle Scholar
  13. 13.
    Cox BT, Arridge SR, Kstli KP, Beard PC (2006) Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl Opt 45:1866–1875CrossRefGoogle Scholar
  14. 14.
    Devaney AJ (1979) The inverse problem for random sources. J Math Phys 20:1687–1691CrossRefGoogle Scholar
  15. 15.
    Devaney AJ (1983) Inverse source and scattering problems in ultrasonics. IEEE T Son Ultrason 30:355–364CrossRefGoogle Scholar
  16. 16.
    Diebold GJ (2009) Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimension. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Diebold GJ, Sun T, Khan MI (Dec 1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett 67(24):3384–3387CrossRefGoogle Scholar
  18. 18.
    Diebold GJ, Westervelt PJ (1988) The photoacoustic effect generated by a spherical droplet in a fluid. J Acoust Soc Am 84(6):2245–2251CrossRefGoogle Scholar
  19. 19.
    Ephrat P, Keenliside L, Seabrook A, Prato FS, Carson JJL (2008) Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J Biomed Opt 13(5): 054052CrossRefGoogle Scholar
  20. 20.
    Esenaliev RO, Karabutov AA, Oraevsky AA (1999) Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 5:981–988CrossRefGoogle Scholar
  21. 21.
    Fessler JA (1994) Penalized weighted least-squares reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300CrossRefGoogle Scholar
  22. 22.
    Fessler JA, Booth SD (1999) Conjugate-gradient preconditioning methods for shiftvariant PET image reconstruction. IEEE Trans Image Process 8(5):688–699MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Finch D, Haltmeier M, Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J Appl Math 68(2): 392–412Google Scholar
  24. 24.
    Finch D, Patch S, Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35:1213–1240Google Scholar
  25. 25.
    Haltmeier M, Scherzer O, Burgholzer P, Paltauf G (2004) Thermoacoustic computed tomography with large planar receivers. Inverse Prob 20(5):1663–1673MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51(24):6437–6448CrossRefGoogle Scholar
  27. 27.
    Joines W, Jirtle R, Rafal M, Schaeffer D (1980) Microwave power absorption differences between normal and malignant tissue. Radiat Oncol Biol Phys 6:681–687CrossRefGoogle Scholar
  28. 28.
    Khokhlova TD, Pelivanov IM, Kozhushko VV, Zharinov AN, Solomatin VS, Karabutov AA (2007) Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl Opt 46(2):262–272CrossRefGoogle Scholar
  29. 29.
    Köstli KP, Beard PC (2003) Two-dimensional photoacoustic imaging by use of fouriertransform image reconstruction and a detector with an anisotropic response. Appl Opt 42(10): 1899–1908CrossRefGoogle Scholar
  30. 30.
    Köstli KP, Frenz M, Bebie H, Weber HP (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys Med Biol 46(7):1863–1872CrossRefGoogle Scholar
  31. 31.
    Kruger R, Reinecke D, Kruger G (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26:1832–1837CrossRefGoogle Scholar
  32. 32.
    Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic optical molecular imaging of small animals. Mol Imaging 2:113–123CrossRefGoogle Scholar
  33. 33.
    Kruger RA, Liu P, Fang R, Appledorn C (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med Phys 22:1605–1609CrossRefGoogle Scholar
  34. 34.
    Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4:559–566Google Scholar
  35. 35.
    Kuchment P, Kunyansky L (2008) Mathematics of thermoacoustic tomography. Eur J Appl Math 19:191–224MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Kunyansky LA (2007) Explicit inversion formulae for the spherical mean radon transform. Inverse Prob 23:373–383MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Langenberg KJ (1987) Basic methods of tomography and inverse problems. Adam Hilger, PhiladelphiaMATHGoogle Scholar
  38. 38.
    Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37(3):705–716CrossRefGoogle Scholar
  39. 39.
    Li C, Pramanik M, Ku G, Wang LV (2008) Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys Rev E Stat Nonlinear Soft Matter Phys 77(3):031923CrossRefGoogle Scholar
  40. 40.
    Li C, Wang LV (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54(19):R59–R97CrossRefGoogle Scholar
  41. 41.
    Maslov K, Wang LV (2008) Photoacoustic imaging of biological tissue with intensitymodulated continuous-wave laser. J Biomeded Opt 13(2):024006CrossRefGoogle Scholar
  42. 42.
    Wernick MN, Aarsvold JN (2004) Emission tomography, the fundamentals of PET and SPECT. Elsevier, San DiegoGoogle Scholar
  43. 43.
    Modgil D, Anastasio MA, Wang K, LaRivière PJ(2009) Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation. In: SPIE, vol 7177. p 71771AGoogle Scholar
  44. 44.
    Norton S, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28: 202–220CrossRefGoogle Scholar
  45. 45.
    Oraevsky AA, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt 36:402–415CrossRefGoogle Scholar
  46. 46.
    Oraevsky AA, Karabutov AA (2000) Ultimate sensitivity of time-resolved optoacoustic detection. In: SPIE, vol 3916. pp 228–239CrossRefGoogle Scholar
  47. 47.
    Oraevsky AA, Karabutov AA (2003) Optoacoustic tomography. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca RatonGoogle Scholar
  48. 48.
    Paltauf G, Nuster R, Burgholzer P (2009) Characterization of integrating ultrasound detectors for photoacoustic tomography. J Appl Phys 105(10):102026CrossRefGoogle Scholar
  49. 49.
    Paltauf G, Schmidt-Kloiber H, Guss H (1996) Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves. Appl Phys Lett 69(11): 1526–1528CrossRefGoogle Scholar
  50. 50.
    Paltauf G, Viator J, Prahl S, Jacques S (2002) Iterative reconstruction algorithm for optoacoustic imaging. J Acoust Soc Am 112:1536–1544CrossRefGoogle Scholar
  51. 51.
    Pan X, Zou Y, Anastasio MA (2003) Data redundany and reduced-scan reconstruction in reflectivity tomography. IEEE Trans Image Process 12:784–795CrossRefGoogle Scholar
  52. 52.
    Patch SK (2004) Thermoacoustic tomography—consistency conditions and the partial scan problem. Phys Med Biol 49(11):2305–2315CrossRefGoogle Scholar
  53. 53.
    Provost J, Lesage F (2009) The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging 28:585–594CrossRefGoogle Scholar
  54. 54.
    La Riviere PJ, Zhang J, Anastasio MA (2006) Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt Lett 31:781–783CrossRefGoogle Scholar
  55. 55.
    Sushilov NV, Cobbold SC (Apr 2004) Frequency-domain wave equation and its timedomain solutions in attenuating media. J Acoust Soc Am 115(4):1431–1436CrossRefGoogle Scholar
  56. 56.
    Tam AC (1986) Application of photo-acoustic sensing techniques. Rev Mod Phys 58:381–431CrossRefGoogle Scholar
  57. 57.
    Wang LV (ed) (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Wang LV, Wu H-I (2007) Biomedical optics, principles and imaging. Wiley, HobokenGoogle Scholar
  59. 59.
    Wang LV, Zhao XM, Sun HT, Ku G (1999) Microwave-induced acoustic imaging of biological tissues. Rev Sci Instrum 70:3744–3748CrossRefGoogle Scholar
  60. 60.
    Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015CrossRefGoogle Scholar
  61. 61.
    Wang Y, Xie X, Wang X, Ku G, Gill KL, ONeal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689–1692Google Scholar
  62. 62.
    Xu M, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822CrossRefGoogle Scholar
  63. 63.
    Xu M, Wang LV (2003) Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys Rev E 67: 056605CrossRefGoogle Scholar
  64. 64.
    Xu M, Wang L (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71:016706CrossRefGoogle Scholar
  65. 65.
    Xu M, Wang LV (2006) Biomedical photoacoustics. Rev Sci Instrum 77:041101CrossRefGoogle Scholar
  66. 66.
    Xu Y, Feng D, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography i: planar geometry. IEEE Trans Med Imaging 21:823–828CrossRefGoogle Scholar
  67. 67.
    Xu Y, Wang LV (2003) Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control 50:1134–1146CrossRefGoogle Scholar
  68. 68.
    Xu Y, Xu M, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography-ii: cylindrical geometry. IEEE Trans Med Imaging 21:829–833CrossRefGoogle Scholar
  69. 69.
    Yuan Z, Jiang H (2006) Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl Phys Lett 88(23):231101CrossRefGoogle Scholar
  70. 70.
    Zhang J, Anastasio MA, Pan X, Wang LV (2005) Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans Med Imaging 24:817–820CrossRefGoogle Scholar
  71. 71.
    Zou Y, Pan X, Anastasio MA (2002) Data truncation and the exterior reconstruction problem in reflection-mode tomography. In: IEEE nuclear science symposium conference record, vol 2. IEEE, pp 726–730Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kun Wang
    • 1
  • Mark A. Anastasio
    • 1
  1. 1.Illinois Institute of TechnologyChicagoUSA

Personalised recommendations