Advertisement

Optical Imaging

  • Simon R. Arridge
  • Jari P. Kaipio
  • Ville Kolehmainen
  • Tanja Tarvainen
Reference work entry

Abstract

This chapter discusses diffuse optical tomography. We present the origins of this method in terms of spectroscopic analysis of tissue using near-infrared light and its extension to an imaging modality. Models for light propagation at the macroscopic and mesoscopic scale are developed from the radiative transfer equation (RTE). Both time and frequency domain systems are discussed. Some formal results based on Green’s function models are presented, and numerical methods are described based on discrete finite element method (FEM) models and a Bayesian framework for image reconstruction. Finally, some open questions are discussed.

Keywords

Inverse Problem Light Propagation Diffusion Approximation Prior Model Radiative Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Amaldi E (1959) The production and slowing down of neutrons. In Flügge S (ed) Encyclopedia of physics, vol 38/2. Springer, Berlin, pp 1–659Google Scholar
  2. 2.
    Aronson R (1995) Boundary conditions for diffusion of light. J Opt Soc Am A 12:2532–2539CrossRefGoogle Scholar
  3. 3.
    Aydin ED (2007) Three-dimensional photon migration through voidlike regions and channels. Appl Opt 46(34):8272–8277CrossRefGoogle Scholar
  4. 4.
    Aydin ED, de Oliveira CRE, Goddard AJH (2004) A finite element-spherical harmonics radiation transport model for photon migration in turbid media. J Quant Spectrosc Radiat Transf 84: 247–260CrossRefGoogle Scholar
  5. 5.
    Bal G (2002) Transport through diffusive and nondiffusive regions, embedded objects, and clear layers. SIAM J Appl Math 62(5):1677–1697MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bal G (2006) Radiative transfer equation with varying refractive index: a mathematical perspective. J Opt Soc Am A 23:1639–1644MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bal G (2009) Inverse transport theory and applications. Inv Probl 25:053001 (48pp)Google Scholar
  8. 8.
    Bal G, Maday Y (2002) Coupling of transport and diffusion models in linear transport theory. Math Model Numer Anal 36(1):69–86MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bluestone AV, Abdoulaev G, Schmitz CH, Barbour RL, Hielscher AH (2001) Three-dimensionalopticaltomographyofhemodynamicsinthehumanhead.OptExpress 9(6):272–286Google Scholar
  10. 10.
    Contini D, Martelli F, Zaccanti G (1997) Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory Appl Opt 36(19):4587–4599Google Scholar
  11. 11.
    Dehghani H, Arridge SR, Schweiger M, Delpy DT (2000) Optical tomography in the presence of void regions. J Opt Soc Am A 17(9): 1659–1670CrossRefGoogle Scholar
  12. 12.
    Fantini S, Franceschini MA, Gratton E (1997) Effective source term in the diffusion equation for photon transport in turbid media. Appl Opt 36(1):156–163CrossRefGoogle Scholar
  13. 13.
    Ferwerda HA (1999) The radiative transfer equation for scattering media with a spatially varying refractive index. J Opt A Pure Appl Opt 1(3): L1–L2CrossRefGoogle Scholar
  14. 14.
    Furutsu K (1980) Diffusion equation derived from space-time transport equation. J Opt Soc Am 70(4):360–366MathSciNetCrossRefGoogle Scholar
  15. 15.
    Groenhuis RAJ, Ferwerda HA, Ten Bosch JJ (1983) Scattering and absorption of turbid materials determined from reflection measurements. Part 1: Theory Appl Opt 22(16):2456–2462Google Scholar
  16. 16.
    Hebden JC, Gibson A, Md Yusof R, Everdell N, Hillman EMC, Delpy DT, Arridge SR, Austin T, Meek JH, Wyatt JS (2002) Three-dimensional optical tomography of the premature infant brain. Phys Med Biol 47:4155–4166CrossRefGoogle Scholar
  17. 17.
    Khan T, Jiang H (2003) A new diffusion approximation to the radiative transfer equation for scattering media with spatially varying refractive indices. J Opt A Pure Appl Opt 5:137–141CrossRefGoogle Scholar
  18. 18.
    Kim AD, Ishimaru A (1998) Optical diffusion of continuos-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer. Appl Opt 37(22):5313–5319CrossRefGoogle Scholar
  19. 19.
    Klose AD, Larsen EW (2006) Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys 220: 441–470MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Kolehmainen V, Arridge SR, Vauhkonen M, Kaipio JP (2000) Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography. Phys Med Biol 45:3267–3283CrossRefGoogle Scholar
  21. 21.
    Marti-Lopez L, Bouza-Dominguez J, Hebden JC, Arridge SR, Martinez-Celorio RA (2003) Validity conditions for the radiative transfer equation. J Opt Soc Am A 20(11):2046–2056CrossRefGoogle Scholar
  22. 22.
    Wang LV (1998) Rapid modeling of diffuse reflectance of light in turbid slabs. J Opt Soc Am A 15(4):936–944CrossRefGoogle Scholar
  23. 23.
    Wright S, Schweiger M, Arridge SR (2007) Reconstruction in optical tomography using the PN approximations. Meas Sci Technol 18:79–86CrossRefGoogle Scholar
  24. 24.
    Ackroyd RT (1997) Finite element methods for particle transport : applications to reactor and radiation physics. Research Studies, TauntonGoogle Scholar
  25. 25.
    Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  26. 26.
    Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15(2):R41–R93MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Arridge SR, Cope M, Delpy DT (1992) Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol 37:1531–1560CrossRefGoogle Scholar
  28. 28.
    Arridge SR, Dehghani H, Schweiger M, Okada E (2000) The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions. Med Phys 27(1):252–264CrossRefGoogle Scholar
  29. 29.
    Arridge SR, Kaipio JP, Kolehmainen V, Schweiger M, Somersalo E, Tarvainen T, Vauhkonen M (2006) Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl 22(1):175–196MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Arridge SR, Lionheart WRB (1998) Non-uniqueness in diffusion-based optical tomography. Opt Lett 23:882–884CrossRefGoogle Scholar
  31. 31.
    Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Prob 25(12):123010 (59pp)Google Scholar
  32. 32.
    Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20(2): 299–309CrossRefGoogle Scholar
  33. 33.
    Arridge SR, Kaipio JP, Kolehmainen V, Schweiger M, Somersalo E, Tarvainen T, Vauhkonen M (2006) Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl 22:175–195MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Benaron DA, Stevenson DK (1993) Optical time-of-flight and absorbance imaging of biological media. Science 259:1463–1466CrossRefGoogle Scholar
  35. 35.
    Berg R, Svanberg S, Jarlman O (1993) Medical transillumination imaging using short-pulse laser diodes. Appl Opt 32:574–579CrossRefGoogle Scholar
  36. 36.
    Berger JO (2006) Statistical decision theory and Bayesian analysis. Springer, New YorkGoogle Scholar
  37. 37.
    Calvetti D, Kaipio JP, Somersalo E (2006) Aristotelian prior boundary conditions. Int J Math 1:63–81MATHGoogle Scholar
  38. 38.
    Case MC, Zweifel PF (1967) Linear transport theory. Addison-Wesley, New YorkMATHGoogle Scholar
  39. 39.
    Cope M, Delpy DT (1988) System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra- red transillumination. Med Biol Eng Comput 26:289–294CrossRefGoogle Scholar
  40. 40.
    Cutler M (1929) Transillumination as an aid in the diagnosis of breast lesions. Surg Gynecol Obstet 48:721–729Google Scholar
  41. 41.
    Delpy DT, Cope M, van der Zee P, Arridge SR, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442CrossRefGoogle Scholar
  42. 42.
    Diamond SG, Huppert TJ, Kolehmainen V, Franceschini MA, Kaipio JP, Arridge SR, Boas DA (2006) Dynamic physiological modeling for functional diffuse optical tomography. Neuroimage 30:88–101CrossRefGoogle Scholar
  43. 43.
    Dorn O (1997) Das inverse Transportproblem in der Lasertomographie. PhD thesis, University of MünsterGoogle Scholar
  44. 44.
    Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New YorkMATHGoogle Scholar
  45. 45.
    Duderstadt JJ, Martin WR (1979) Transport theory. Wiley, New YorkMATHGoogle Scholar
  46. 46.
    Durbin J, Koopman J (2001) Time series analysis by state space methods. Oxford University Press, OxfordMATHGoogle Scholar
  47. 47.
    Firbank M, Arridge SR, Schweiger M, Delpy DT (1996) An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol 41:767–783CrossRefGoogle Scholar
  48. 48.
    Haskell RC, Svaasand LO, Tsay T-T, Feng T-C, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A 11(10):2727–2741CrossRefGoogle Scholar
  49. 49.
    Hayashi T, Kashio Y, Okada E (2003) Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Appl Opt 42(16):2888–2896CrossRefGoogle Scholar
  50. 50.
    Hebden JC, Kruger RA, Wong KS (1991) Time resolved imaging through a highly scattering medium. Appl Opt 30(7):788–794CrossRefGoogle Scholar
  51. 51.
    Heino J, Somersalo E (2002) Estimation of optical absorption in anisotropic background. Inverse Prob 18:559–573MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Heino J, Somersalo E (2004) A modelling error approach for the estimation of optical absorption in the presence of anisotropies. Phys Med Biol 49:4785–4798CrossRefGoogle Scholar
  53. 53.
    Heino J, Somersalo E, Kaipio JP (2005) Compensation for geometric mismodelling by anisotropies in optical tomography. Opt Express 13(1):296–308CrossRefGoogle Scholar
  54. 54.
    Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. AstroPhys J 93:70–83CrossRefGoogle Scholar
  55. 55.
    Hielscher AH, Alcouffe RE, Barbour RL (1998) Comparison of finitedifference transport and diffusion calculations for photon migration in homogeneous and hetergeneous tissue. Phys Med Biol 43:1285–1302CrossRefGoogle Scholar
  56. 56.
    Ho PP, Baldeck P, Wong KS, Yoo KM, Lee D, Alfano RR (1989) Time dynamics of photon migration in semiopaque random media. Appl Opt 28:2304–2310CrossRefGoogle Scholar
  57. 57.
    Huttunen JMJ, Kaipio JP (2007) Approximation error analysis in nonlinear state estimation with an application to state-space identification. Inverse Prob 23:2141–2157MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Huttunen JMJ, Kaipio JP (2007) Approximation errors in nostationary inverse problems. Inverse Prob Imaging 1(1):77–93MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Huttunen JMJ, Kaipio JP (2009) Model reduction in state identification problems with an application to determination of thermal parameters. Appl Numer Math 59: 877–890MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Huttunen JMJ, Lehikoinen A, Hämäläinen J, Kaipio JP (2009) Importance filtering approach for the nonstationary approximation error method. Inverse Prob in reviewGoogle Scholar
  61. 61.
    Ishimaru A (1978) Wave propagation and scattering in random media, vol 1. Academic, New YorkGoogle Scholar
  62. 62.
    Jarry G, Ghesquiere S, Maarek JM, Debray S, Bui M-H, Laurent HD (1984) Imaging mammalian tissues and organs using laser collimated transillumination. J Biomed Eng 6:70–74CrossRefGoogle Scholar
  63. 63.
    Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264–1267CrossRefGoogle Scholar
  64. 64.
    Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, New YorkMATHGoogle Scholar
  65. 65.
    Kaipio J, Somersalo E (2007) Statistical and computational inverse problems. J Comput Appl Math 198:493–504MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Kaipio JP, Kolehmainen V, Vauhkonen M, Somersalo E (1999) Inverse problems with structural prior information. Inverse Probl 15:713–729MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Kak AC, Slaney M (1987) Principles of computerized tomographic imaging. IEEE, New YorkGoogle Scholar
  68. 68.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME. J Basic Eng 82D(1):35–45CrossRefGoogle Scholar
  69. 69.
    Kolehmainen V, Prince S, Arridge SR, Kaipio JP (2000) A state estimation approach to non-stationary optical tomography problem. J Opt Soc Am A 20:876–884CrossRefGoogle Scholar
  70. 70.
    Kolehmainen V, Schweoger M, Nissilä I, Tarvainen T, Arridge SR, Kaipio JP (2009) Approximation errors and model reduction in three-dimensional optical tomography. J Optical Soc Amer A 26:2257–2268CrossRefGoogle Scholar
  71. 71.
    Kolehmainen V, Tarvainen T, Arridge SR, Kaipio JP (2010) Marginalization of uninteresting distributed parameters in inverse problems – application to diffuse optical tomography. Int J Uncertainty Quantification, In pressGoogle Scholar
  72. 72.
    Lakowicz JR, Berndt K (1990) Frequency domain measurement of photon migration in tissues. Chem Phys Lett 166(3):246–252CrossRefGoogle Scholar
  73. 73.
    Lehikoinen A, Finsterle S, Voutilainen A, Heikkinen LM, Vauhkonen M, Kaipio JP (2007) Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl Imaging 1: 371–389MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Lehikoinen A, Huttunen JMJ, Finsterle S, Kowalsky MB, Kaipio JP: Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties, Water Resour Res 46: W04513, doi:10.1029/2009WR008470, 2010Google Scholar
  75. 75.
    Mitic G, Kolzer J, Otto J, Plies E, Solkner G, Zinth W (1994) Timegated transillumination of biological tissue and tissuelike phantoms. Opt Lett 33:6699–6710Google Scholar
  76. 76.
    Natterer F, Wübbeling F (2001) Mathematical methods in image reconstruction. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  77. 77.
    Nissilä I, Noponen T, Kotilahti K, Tarvainen T, Schweiger M, Lipiänen L, Arridge SR, Katila T (2005) Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography. Rev Sci Instrum 76(4):004302CrossRefGoogle Scholar
  78. 78.
    Nissinen A, Heikkinen LM, Kolehmainen V, Kaipio JP (2009) Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas Sci Technol 20, doi: 10.1088/0957–0233/20/10/105504Google Scholar
  79. 79.
    Nissinen A, Kolehmainen V, Kaipio JP: Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography, IEEE Trans Med Imaging, in review, 2010.Google Scholar
  80. 80.
    Nissinen A, Heikkinen LM, Kaipio JP (2008) Approximation errors in electrical impedance tomography – an experimental study. Meas Sci Technol 19, doi: 10.1088/0957-0233/19/1/015501Google Scholar
  81. 81.
    Ntziachristos V, Ma X, Chance B (1998) Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev Sci Instrum 69:4221–4233CrossRefGoogle Scholar
  82. 82.
    Okada E, Schweiger M, Arridge SR, Firbank M, Delpy DT (1996) Experimental validation of Monte Carlo and Finite-Element methods for the estimation of the optical path length in inhomogeneous tissue. Appl Opt 35(19):3362–3371CrossRefGoogle Scholar
  83. 83.
    Prince S, Kolehmainen V, Kaipio JP, Franceschini MA, Boas D, Arridge SR (2003) Time series estimation of biological factors in optical diffusion tomography. Phys Med Biol 48(11): 1491–1504CrossRefGoogle Scholar
  84. 84.
    Schmidt A, Corey R, Saulnier P (1995) Imaging through random media by use of low-coherence optical heterodyning. Opt Lett 20:404–406 CrossRefGoogle Scholar
  85. 85.
    Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT (2000) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71(1):256–265CrossRefGoogle Scholar
  86. 86.
    Schmitt JM, Gandbjbakhche AH, Bonner RF (1992) Use of polarized light to discriminate short-path photons in a multiply scattering medium. Appl Opt 31:6535–6546CrossRefGoogle Scholar
  87. 87.
    Schotland JC, Markel V (2001) Inverse scattering with diffusing waves. J Opt Soc Am A 18: 2767–2777MathSciNetCrossRefGoogle Scholar
  88. 88.
    Schweiger M, Arridge SR (1997) The finite element model for the propagation of light in scattering media: frequency domain case. Med Phys 24(6):895–902CrossRefGoogle Scholar
  89. 89.
    Schweiger M, Arridge SR, Hiraoka M, Delpy DT (1995) The finite element model for the propagation of light in scattering media: boundary and source conditions. Med Phys 22(11): 1779–1792CrossRefGoogle Scholar
  90. 90.
    Schweiger M, Arridge SR, Nissilä I (2005) Gauss–Newton method for image reconstruction in diffuse optical tomography. Phys Med Biol 50:2365–2386CrossRefGoogle Scholar
  91. 91.
    Schweiger M, Nissilä I, Boas DA, Arridge SR (2007) Image reconstruction in optical tomography in the presence of coupling errors. Appl Opt 46(14):2743–2756CrossRefGoogle Scholar
  92. 92.
    Spears KG, Serafin J, Abramson NH, Zhu X, Bjelkhagen H (1989) Chronocoherent imaging for medicine. IEEE Trans Biomed Eng 36: 1210–1221CrossRefGoogle Scholar
  93. 93.
    Sylvester J, Uhlmann G (1987) A global uniquness theorem for an inverse boundary value problem. Ann Math 125:153–169MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Tarvainen T, Kolehmainen V, Pulkkinen A, Vauhkonen M, Schweiger M, Arridge SR, Kaipio JP (2010) Approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography. Inverse Probl 26, doi: 10.1088/0266–5611/ 26/1/015005Google Scholar
  95. 95.
    Tarvainen T, Vauhkonen M, Kolehmainen V, Arridge SR, Kaipio JP (2005) Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Phys Med Biol 50:4913–4930CrossRefGoogle Scholar
  96. 96.
    Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP (2005) A hybrid radiative transfer – diffusion model for optical tomography. Appl Opt 44(6):876–886CrossRefGoogle Scholar
  97. 97.
    Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP (2006) Finite element model for the coupled radiative transfer equation and diffusion approximation. Int J Numer Meth Engng 65(3):383–405MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Tervo J, Kolmonen P, Vauhkonen M, Heikkinen LM, Kaipio JP (1999) A finite-element model of electron transport in radiation therapy and a related inverse problem. Inverse Prob 15: 1345–1362MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Wang L, Ho PP, Liu C, Zhang G, Alfano RR (1991) Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253:769–771CrossRefGoogle Scholar
  100. 100.
    Wang L, Jacques SL (1993) Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media. J Opt Soc Am A 10(8):1746–1752CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Simon R. Arridge
    • 1
  • Jari P. Kaipio
    • 2
  • Ville Kolehmainen
    • 3
  • Tanja Tarvainen
    • 3
  1. 1.University College LondonLondonUK
  2. 2.University of AucklandAucklandNew Zealand
  3. 3.University of Eastern FinlandSavonlinnaFinland

Personalised recommendations