Electrical Impedance Tomography

  • Andy Adler
  • Romina Gaburro
  • William Lionheart


Electrical Impedance Tomography (EIT) is the recovery of the conductivity (or conductivity and permittivity) of the interior of a body from a knowledge of currents and voltages applied to its surface. In geophysics, where the method is used in prospecting and archaeology, it is known as electrical resistivity tomography. In industrial process tomography it is known as electrical resistance tomography or electrical capacitance tomography. In medical imaging, when at the time of writing it is still an experimental technique rather than routine clinical practice, it is called EIT. A very similar technique is used by weakly electric fish to navigate and locate prey and in this context it is called electrosensing.

The simplest mathematical formulation of inverse problem of EIT can be stated as follows. Let Ω be a conducting body described by a bounded domain in \({\mathbb{R}}^{n}\)


Inverse Problem Electrical Impedance Tomography Pseudodifferential Operator Contact Impedance Forward Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adler A, Lionheart WRB (2006) Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 27:S25–S42CrossRefGoogle Scholar
  2. 2.
    Alessandrini G (1988) Stable determination of conductivity by boundary measurements. Appl Anal 27:153–172MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alessandrini G (1990) Singular solutions of elliptic equations and the determination of conductivity by boundary measurements. J Differ Equations 84(2):252–272MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alessandrini G (1991) Determining conductivity by boundary measurements, the stability issue. In: Spigler R (ed) Applied and industrial mathematics. Kluwer, Dordrecht, pp 317–324CrossRefGoogle Scholar
  5. 5.
    Alessandrini G (2007) Open issues of stability for the inverse conductivity problem. J Inverse Ill-Posed Prob 15:451–460MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Alessandrini G, Gaburro R (2001) Determining Conductivity with Special Anisotropy by Boundary Measurements. SIAM J Math Anal 33:153–171MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Alessandrini G, Gaburro R (2009) The local Calderón problem and the determination at the boundary of the conductivity. Commun Part Differ Eq 34:918–936MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Alessandrini G, Vessella S (2005) Lipschitz stability for the inverse conductivity problem. Adv Appl Math 35:207–241MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ammari H, Buffa A, Nédélec J-C (2000) A justification of eddy currents model for the Maxwell equations. SIAM J Appl Math 60: 1805–1823MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Aronszajn N (1957) A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J Math Pures Appl 36:235–249MathSciNetMATHGoogle Scholar
  11. 11.
    Astala K, Päivärinta L (2006) Calderón’s inverse conductivity problem in the plane. Annals of Mathematics 163:265–299MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Barber D, Brown B (1986) Recent developments in applied potential tomography – APT. In: Bacharach SL (ed) Information processing in medical imaging. Nijhoff, Amsterdam, pp 106–121CrossRefGoogle Scholar
  13. 13.
    Barceló JA, Faraco D, Ruiz A (2001) Stability of the inverse problem in the plane for less regular conductivities. J Differ Equations 173:231–270MATHCrossRefGoogle Scholar
  14. 14.
    Barceló JA, Barceló T, Ruiz A (2007) Stability of Calderón inverse conductivity problem in the plane. J Math Pures Appl 88:522–556MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Berenstein CA, Casadio Tarabusi E (1996) Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J Appl Math 56:75564MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bikowski J (2009) Electrical impedance tomography reconstructions in two and three dimensions; from Calderón to direct methods. PhD thesis, Colorado State University, Fort CollinsGoogle Scholar
  17. 17.
    Borcea L (2002) Electrical impedance tomography. Inverse Prob 18:R99–R136; Borcea L (2003) Addendum to electrical impedance tomography. Inverse Prob 19:997–998Google Scholar
  18. 18.
    Borsic A, Graham BM, Adler A, Lionheart WRB (2010) Total variation regularization in electrical impedance tomography. IEEE Trans Med Imaging 29(1):44–54CrossRefGoogle Scholar
  19. 19.
    Brown R (2001) Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result. J Inverse Ill-Posed Prob 9:567–574MATHGoogle Scholar
  20. 20.
    Beals R, Coifman R (1982) Transformation spectrales et equation d’evolution non lineares. Seminaire Goulaouic-Meyer-Schwarz, exp 9, pp 1981–1982Google Scholar
  21. 21.
    Beals R, Coifman RR (1989) Linear spectral problems, non-linear equations and the \(\bar{\partial }\)-method. Inverse Prob 5:87130MathSciNetCrossRefGoogle Scholar
  22. 22.
    Brown R, Torres R (2003) Uniqueness in the inverse conductivity problem for conductivities with 3 ∕ 2 derivatives in L p, p > 2n. J Fourier Anal Appl 9:1049–1056MathSciNetCrossRefGoogle Scholar
  23. 23.
    Brown R, Uhlmann G (1997) Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions. Commun Part Differ Eq 22:1009–1027MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Bukhgeim AL, Uhlmann G (2002) Recovery a potential from partial Cauchy data. Commun Part Differ Eq 27:653–668MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Calderón AP (1980) On an inverse boundary value problem. In: Seminar on numerical analysis and its applications to continuum physics (Rio de Janeiro, 1980). Soc Brasil Mat, Rio de Janeiro, pp 65–73Google Scholar
  26. 26.
    Calderón AP (2006) On an inverse boundary value problem. Comput Appl Math 25(2–3):133–138 (Note this reprint has some different typographical errors from the original: in particular on the first page the Dirichlet data for w is φ not zero)Google Scholar
  27. 27.
    Chambers JE, Meldrum PI, Ogilvy RD, Wilkinson PB (2005) Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surface Geophysics 3:79–90Google Scholar
  28. 28.
    Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71:B231–B239CrossRefGoogle Scholar
  29. 29.
    Cheng K, Isaacson D, Newell JC, Gisser DG (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36:918–924CrossRefGoogle Scholar
  30. 30.
    Cheney M, Isaacson D, Newell JC (1999) Electrical Impedance Tomography. SIAM Rev 41:85–101MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Cornean H, Knudsen K, Siltanen S (2006) Towards a D-bar reconstruction method for three dimensional EIT. J Inverse Ill-Posed Prob 14:111134MathSciNetGoogle Scholar
  32. 32.
    Colin de Verdière Y, Gitler I, Vertigan D (1996) Réseaux électriques planaires II. Comment Math Helv 71:144–167MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Di Cristo M (2007) Stable determination of an inhomogeneous inclusion by local boundary measurements. J Comput Appl Math 198:414–425MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ciulli S, Ispas S, Pidcock MK (1996) Anomalous thresholds and edge singularities in electrical impedance tomography. J Math Phys 37:4388MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Dobson DC (1990) Stability and regularity of an inverse elliptic boundary value problem. Technical report TR90-14, Rice University, Department of Mathematical SciencesGoogle Scholar
  36. 36.
    Doerstling BH (1995) A 3-d reconstruction algorithm for the linearized inverse boundary value problem for Maxwell’s equations. PhD thesis, Rensselaer Polytechnic Institute, TroyGoogle Scholar
  37. 37.
    Druskin V (1982) The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-constant conductivity. Izv Phys Solid Earth 18:51–53 (in Russian)Google Scholar
  38. 38.
    Druskin V (1985) On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources. Sov Phys Solid Earth 21:210–214 (in Russian)Google Scholar
  39. 39.
    Druskin V (1998) On the uniqueness of inverse problems for incomplete boundary data. SIAM J Appl Math 58(5):1591–1603MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Gaburro R (1999) Sul Problema Inverso della Tomografia da Impedenza Elettrica nel Caso di Conduttivitá Anisotropa. Tesi di Laurea in Matematica, Universitá degli Studi di TriesteGoogle Scholar
  41. 41.
    Gaburro R (2003) Anisotropic conductivity. Inverse boundary value problems. PhD thesis, University of Manchester Institute of Science and Technology (UMIST), ManchesterGoogle Scholar
  42. 42.
    Gaburro R, Lionheart WRB (2009) Recovering Riemannian metrics in monotone families from boundary data. Inverse Prob 25:045004 (14pp)Google Scholar
  43. 43.
    Geotomo Software (2009) RES3DINV ver 2.16, Rapid 3D resistivity and IP inversion using the least-squares method. Geotomo Software, Malaysia. www.geoelectrical.com
  44. 44.
    Gisser DG, Isaacson D, Newell JC (1990) Electric current computed tomography and eigenvalues. SIAM J Appl Math 50:1623–1634MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Griffiths H, Jossinet J (1994) Bioelectric tissue spectroscopy from multifrequency EIT. Physiol Meas 15(2A):29–35Google Scholar
  46. 46.
    Griffiths H (2001) Magnetic induction tomography. Meas Sci Technol 12:1126–1131CrossRefGoogle Scholar
  47. 47.
    Hanke M (2008) On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Prob 24:045005MathSciNetCrossRefGoogle Scholar
  48. 48.
    Hanke M, Schappel B (2008) The factorization method for electrical impedance tomography in the half-space. SIAM J Appl Math 68:907–924MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Hähner P (1996) A periodic Faddeev-type solution operator. J Differ Equations 128: 300–308MATHCrossRefGoogle Scholar
  50. 50.
    Huang SM, Plaskowski A, Xie CG, Beck MS (1988) Capacitance-based tomographic flow imaging system. Electronics Lett 24:418–419CrossRefGoogle Scholar
  51. 51.
    Heck H, Wang J-N, (2006) Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Prob 22:1787–1796MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Heikkinen LM, Vilhunen T, West RM, Vauhkonen M (2002) Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas Sci Technol 13:1855CrossRefGoogle Scholar
  53. 53.
    Henderson RP, Webster JG (1978) An Impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng BME-25(3):250–254Google Scholar
  54. 54.
    Holder DS (2005) Electrical impedance tomography methods history and applications. Institute of Physics, BristolGoogle Scholar
  55. 55.
    Ikehata M (2001) The enclosure method and its applications, chapter 7. In: Analytic extension formulas and their applications (Fukuoka, 1999/Kyoto, 2000). Kluwer; Int Soc Anal Appl Comput 9:87–103MathSciNetGoogle Scholar
  56. 56.
    Ikehata M, Siltanen S (2000) Numerical method for nding the convex hull of an inclusion in conductivity from boundary measurements. Inverse Prob 16:273–296MathSciNetGoogle Scholar
  57. 57.
    Ingerman D, Morrow JA (1998) On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J Math Anal 29:106115MathSciNetCrossRefGoogle Scholar
  58. 58.
    Isaacson D (1986) Distinguishability of conductivities by electric current computed tomography. IEEE TransMed Imaging 5:92–95Google Scholar
  59. 59.
    Isaacson D, Mueller JL, Newell J, Siltanen S (2004) Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography. IEEE Trans Med Imaging 23:821–828CrossRefGoogle Scholar
  60. 60.
    Isaacson D, Mueller JL, Newell J, Siltanen S (2006) Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol Meas 27:S43–S50CrossRefGoogle Scholar
  61. 61.
    Isakov V (1991) Completeness of products of solutions and some inverse roblems for PDE. J Differ Equations 92:305–317MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Isakov V (2007) On the uniqueness in the inverse conductivity problem with local data. Inverse Prob Imaging 1:95–105MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Kaipio J, Kolehmainen V, Somersalo E, Vauhkonen M (2000) Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob 16:1487–1522MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Kang H, Yun K (2002) Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator. SIAM J Math Anal 34:719–735MathSciNetCrossRefGoogle Scholar
  65. 65.
    Kenig C, Sjöstrand J, Uhlmann G (2007) The Calderón problem with partial data. Ann Math 165:567–591MATHCrossRefGoogle Scholar
  66. 66.
    Kim Y, Woo HW (1987) A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging. Clin Phys Physiol Meas 8:63–70CrossRefGoogle Scholar
  67. 67.
    Kohn R, Vogelius M (1984) Identification of an Unknown Conductivity by Means of Measurements at the Boundary. SIAM-AMS Proc 14:113–123MathSciNetGoogle Scholar
  68. 68.
    Kohn R, Vogelius M (1985) Determining conductivity by boundary measurements II. Interior results. Comm Pure Appl Math 38: 643–667MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Knudsen K, Lassas M, Mueller JL, Siltanen S (2009) Regularized D-bar method for the inverse conductivity problem. Inverse Prob Imaging 3:599–624MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Lassas M, Uhlmann G (2001) Determining a Riemannian manifold from boundary measurements. Ann Sci École Norm Sup 34: 771–787MathSciNetMATHGoogle Scholar
  71. 71.
    Lassas M, Taylor M, Uhlmann G (2003) The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun Geom Anal 11:207–222MathSciNetMATHGoogle Scholar
  72. 72.
    Lionheart WRB (1997) Conformal Uniqueness Results in Anisotropic Electrical Impedance Imaging. Inverse Prob 13:125–134MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Lee JM, Uhlmann G (1989) Determining anisotropic real-analytic conductivities by boundary measurements. Commun Pure Appl Math 42:1097–1112MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Liu L (1997) Stability estimates for the two-dimensional inverse conductivity problem. PhD thesis, University of Rochester, New YorkGoogle Scholar
  75. 75.
    Loke MH (2010) Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo software. www.geoelectrical.com
  76. 76.
    Loke MH, Barker RD (1996) Rapid least- squares inversion by a quasi- Newton method. Geophys Prospect 44:131152Google Scholar
  77. 77.
    Loke MH, Chambers JE, Ogilvy RD (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54: 287–301CrossRefGoogle Scholar
  78. 78.
    Mandache N (2001) Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob 17:1435–1444MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Meyers NG (1963) An Lp estimate for the gradient of solutions of second order elliptic divergence equations. Ann Scuola Norm Sup-Pisa 17(3):189–206MathSciNetMATHGoogle Scholar
  80. 80.
    Molinari M, Blott BH, Cox SJ, Daniell GJ (2002) Optimal imaging with adaptive mesh refinement in electrical tomography. Physiol Meas 23(1):121–128CrossRefGoogle Scholar
  81. 81.
    Nachman A (1988) Reconstructions from boundary measurements. Ann Math 128:531–576MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Nachman A (1996) Global uniqueness for a two dimensional inverse boundary value problem. Ann Math 143:71–96MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Nachman A, Sylvester J, Uhlmann G (1988) An n-dimensional Borg-Levinson theorem. Commun Math Phys 115:593–605MathSciNetCrossRefGoogle Scholar
  84. 84.
    Nakamura G, Tanuma K (2001) Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map. Inverse Prob 17:405–419MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Nakamura G, Tanuma K (2001) Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map. Commun Korean Math Soc 16:415–425MathSciNetMATHGoogle Scholar
  86. 86.
    Nakamura G, Tanuma K (2003) Formulas for reconstrucing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map. In: Hon Y-C, Yamamoto M, Cheng J, Lee J-Y (eds) Proceeding international conference on inverse problem-recent development in theories and numerics. World Scientific, River Edge, pp 192–201CrossRefGoogle Scholar
  87. 87.
    Novikov RG (1988) A multidimensional inverse spectral problem for the equation \(-\Delta \psi + (v(x) - Eu(x))\psi \,=\,0\). (Russian) Funktsional. Anal i Prilozhen 22, 4:11–22, 96; translation in Funct Anal Appl 22, 4:263–272 (1989)Google Scholar
  88. 88.
    Paulson K, Breckon W, Pidcock M (1992) Electrode modeling in electrical-impedance tomography. SIAM J Appl Math 52:1012–1022MATHCrossRefGoogle Scholar
  89. 89.
    Päivärinta L, Panchenko A, Uhlmann G (2003) Complex geometrical optics solutions for Lipschitz conductivities. Rev Mat Iberoam 19: 57–72MATHCrossRefGoogle Scholar
  90. 90.
    Polydorides N, Lionheart WRB (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13:1871–1883CrossRefGoogle Scholar
  91. 91.
    Seagar AD (1983) Probing with low frequency electric current. PhD thesis, University of Canterbury, ChristchurchGoogle Scholar
  92. 92.
    Seagar AD, Bates RHT (1985) Full-wave computed tomography. Pt 4: Low-frequency electric current CT. Inst Electr Eng Proc Pt A 132:455–466Google Scholar
  93. 93.
    Siltanen S, Mueller JL, Isaacson D (2000) An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob 16:681–699MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Soleimani M, Lionheart WRB (2005) Nonlinear image reconstruction for electrical capacitance tomography experimental data using. Meas Sci Technol 16(10):1987–1996CrossRefGoogle Scholar
  95. 95.
    Soleimani M, Lionheart WRB, Dorn O (2006) Level set reconstruction of conductivity and permittivity from boundary electrical measurements using expeimental data. Inverse Prob Sci Eng 14:193–210MATHCrossRefGoogle Scholar
  96. 96.
    Somersalo E, Cheney M, Isaacson D (1992) Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math 52:1023–1040MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Soni NK (2005) Breast imaging using electrical impedance tomography. PhD thesis, Dartmouth College, NHGoogle Scholar
  98. 98.
    Sylvester J (1990) An anisotropic inverse boundary value problem. Commun Pure Appl Math 43:201–232MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Sylvester J, Uhlmann G (1986) A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun Pure Appl Math 39:92–112MathSciNetCrossRefGoogle Scholar
  100. 100.
    Sylvester J, Uhlmann G (1987) A global uniqueness theorem for an inverse boundary valued problem. Ann Math 125:153–169MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Sylvester J, Uhlmann G (1988) Inverse boundary value problems at the boundary – continuous dependence. Commun Pure Appl Math 41:197–221MathSciNetCrossRefGoogle Scholar
  102. 102.
    Tamburrino A, Rubinacci G (2002) A new non-iterative inversion method for electrical resistance tomography. Inverse Prob 18: 1809–1829MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Uhlmann G (2009) Topical review: electrical impedance tomography and Calderón’s problem. Inverse Prob 25:123011 (39pp)Google Scholar
  104. 104.
    Vauhkonen M, Lionheart WRB, Heikkinen LM, Vauhkonen PJ, Kaipio JP (2001) A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol Meas 22:107–111CrossRefGoogle Scholar
  105. 105.
    Vauhkonen M (1997) Electrical impedance tomography and prior information. PhD thesis, University of Kuopio, KuopioGoogle Scholar
  106. 106.
    Vauhkonen M, Karjalainen PA, Kaipio JP (1998) A Kalman Filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans Biomed Eng 45:486–493CrossRefGoogle Scholar
  107. 107.
    West RM, Soleimani M, Aykroyd RG, Lionheart WRB (2006) Speed Improvement of MCMC Image Reconstruction in Tomography by Partial Linearization. Int J Tomogr Stat 4, No. S06: 13–23MathSciNetGoogle Scholar
  108. 108.
    West RM, Jia X, Williams RA (2000) Parametric modelling in industrial process tomography. Chem Eng J 77:31–36CrossRefGoogle Scholar
  109. 109.
    Yang WQ, Spink DM, York TA, McCann H (1999) An image reconstruction algorithm based on Landwebers iteration method for electrical-capacitance tomography. Meas Sci Technol 10:1065–1069CrossRefGoogle Scholar
  110. 110.
    York T (2001) Status of electrical tomography in industrial applications. J Electron Imaging 10:608–619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andy Adler
    • 1
  • Romina Gaburro
    • 2
  • William Lionheart
    • 3
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.University of LimerickLimerickIreland
  3. 3.The University of ManchesterManchesterUK

Personalised recommendations