Advertisement

Inverse Scattering

  • David Colton
  • Rainer Kress

Abstract

We give a survey of the mathematical basis of inverse scattering theory, concentrating on the case of time-harmonic acoustic waves. After an introduction and historical remarks we give an outline of the direct scattering problem. This is then followed by sections on uniqueness results in inverse scattering theory and iterative and decomposition methods to reconstruct the shape and material properties of the scattering object. We conclude by discussing qualitative methods in inverse scattering theory, in particular the linear sampling method and its use in obtaining lower bounds on the constitutive parameters of the scattering object.

Keywords

Helmholtz Equation Field Pattern Inverse Scattering Problem Impedance Boundary Condition Inverse Scatter Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alessandrini G, Rondi L (2005) Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc Am Math Soc 133:1685–1691MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Arens T (2004) Why linear sampling works. Inverse Prob 20:163–173MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arens T, Lechleiter A (2009) The linear sampling method revisited. J Integral Eqn Appl 21:179–202MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    van den Berg R, Kleinman R (1997) A contrast source inversion method. Inverse Prob 13:1607–1620MATHCrossRefGoogle Scholar
  5. 5.
    Bukhgeim A (2008) Recovering a potential from Cauchy data in the two-dimensional case. J Inverse Ill–Posed Prob 16:19–33Google Scholar
  6. 6.
    Cakoni F, Colton D (2003) A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media. Proc Edinburgh Math Soc 46:293–314MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cakoni F, Colton D (2006) Qualitative methods in inverse scattering theory. Springer, BerlinMATHGoogle Scholar
  8. 8.
    Cakoni F, Colton D (2004) The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J Appl Math 64:709–723MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cakoni F, Colton D, Haddar H (2009) The computation of lower bounds for the norm of the index of refraction in anisotropic media from far field data. J Integral Eqn Appl 21:203–227MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cakoni F, Colton D, Haddar H (2010) The interior transmission problem for regions with cavities. SIAM J Math Anal 42:145–162MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cakoni F, Colton D, Haddar H (2010) On the determination of Dirichlet and transmission eigenvalues from far field data. Comp Rend Mathematique 348:379–383MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cakoni F, Colton D, Monk P (2004) The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc R Soc Edinburgh 134A:661–682MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cakoni F, Colton D, Monk P The linear sampling method in inverse electromagnetic scattering. SIAM.Google Scholar
  14. 14.
    Cakoni F, Fares M, Haddar H (2006) Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Prob 22:845–867MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Cakoni F, Gintides D, Haddar H (2010) The existence of an infinite discrete set of transmission eigenvalues. SIAM J Math Anal 42:237–255MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Cakoni F, Haddar H (2007) A variational approach for the solution of the electro-magnetic interior transmission problem for anisotropic media. Inverse Prob Imaging 1:443–456MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cakoni F, Haddar H (2010) On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal 89:29–47MathSciNetCrossRefGoogle Scholar
  18. 18.
    Colton D, Haddar H (2005) An application of the reciprocity gap functional to inverse scattering theory. Inverse Prob 21:383–398MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Colton D, Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J Sci Comput 24:719–731MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Prob 12:383–393MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Colton D, Kirsch A, Päivärinta L (1989) Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J Math Anal 20:1472–1483MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Colton D, Kress R (1995) Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J Appl Math 55:1724–1735MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, BerlinMATHGoogle Scholar
  24. 24.
    Colton D, Kress R (2001) On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math Methods Appl Sci 24:1289–1303MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Colton D, Monk P (1986) A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region II. SIAM J Appl Math 26:506–523MathSciNetCrossRefGoogle Scholar
  26. 26.
    Colton D, Monk P (1988) The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart J Mech Appl Math 41:97–125MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Colton D, Monk P (2006) Target identification of coated objects. IEEE Trans Antennas Prop 54:1232–1242CrossRefGoogle Scholar
  28. 28.
    Colton D, Päivärinta L (1992) The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch Rational Mech Anal 119:59–70MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Colton D, Päivärinta L, Sylvester J (2007) The interior transmission problem. Inverse Probl Imaging 1:13–28MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Colton D, Piana M, Potthast R (1997) A simple method using Mozorov’s discrepancy principle for solving inverse scattering problems. Inverse Prob 13:1477–1493MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Colton D, Sleeman B (2001) An approximation property of importance in inverse scattering theory. Proc Edinburgh Math Soc 44:449–454MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Farhat C, Tezaur R, Djellouli R (2002) On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Prob 18:1229–1246MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Gintides D (2005) Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Prob 21:1195–1205MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Gylys–Colwell F (1996) An inverse problem for the Helmholtz equation. Inverse Prob 12:139–156Google Scholar
  35. 35.
    Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob 18:891–906MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Hähner P (1996) A periodic Faddeev–type solution operator. J Diff Eqn 128:300–308MATHCrossRefGoogle Scholar
  37. 37.
    Hähner P (2000) On the uniqueness of the shape of a penetrable anisotropic obstacle. J Comp Appl Math 116:167–180MATHCrossRefGoogle Scholar
  38. 38.
    Hähner P (2002) Electromagnetic wave scattering. In: Pike R, Sabatier P (eds) Scattering. Academic, New YorkGoogle Scholar
  39. 39.
    Harbrecht H, Hohage T (2007) Fast methods for three-dimensional inverse obstacle scattering problems. J Integral Eqn Appl 19:237–260MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Hohage T (1999) Iterative methods in inverse obstacle Scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. Dissertation, LinzGoogle Scholar
  41. 41.
    Isakov V (1988) On the uniqueness in the inverse transmission scattering problem. Comm Partial Diff Eqns 15:1565–1587MathSciNetCrossRefGoogle Scholar
  42. 42.
    Isakov V (1996) Inverse problems for partial differential equations. Springer, BerlinGoogle Scholar
  43. 43.
    Ivanyshyn O (2007) Nonlinear boundary integral equations in inverse scattering. Dissertation, GäottingenGoogle Scholar
  44. 44.
    Ivanyshyn O, Kress R (2006) Nonlinear integral equations in inverse obstacle scattering. In: Fotiatis M (ed) Mathematical methods in scattering theory and biomedical engineering. World Scientific, Singapore, pp 39–50Google Scholar
  45. 45.
    Ivanyshyn O, Kress R (2010) Identification of sound-soft 3D obstacles from phaseless data. Inverse Prob Imaging 4:131–149MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Johansson T, Sleeman B (2007) Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J Appl Math 72:96–112MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Jones DS (1986) Acoustic and electromagnetic waves. Clarendon, OxfordGoogle Scholar
  48. 48.
    Kirsch A (1993) The domain derivative and two applications in inverse scattering. Inverse Prob 9:81–86MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob 14:1489–1512MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Kirsch A (1999) Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob 15:413–429MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Kirsch A (2007) An integral equation approach and the interior transmission problem for Maxwell’s equations. Inverse Prob Imaging 1:159–179MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Kirsch A (2009) On the existence of transmission eigenvalues. Inverse Prob Imaging 3:155–172MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Kirsch A, Grinberg N (2008) The factorization method for inverse problems. Oxford University Press, OxfordMATHGoogle Scholar
  54. 54.
    Kirsch A, Kress R (1987) An optimization method in inverse acoustic scattering. In: Brebbia CA et al (ed) Boundary elements IX, Vol 3. Fluid flow and potential applications. Springer, BerlinGoogle Scholar
  55. 55.
    Kirsch A, Kress R (1993) Uniqueness in inverse obstacle scattering. Inverse Prob 9:285–299MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Kleinman R, van den Berg P (1992) A modified gradient method for two dimensional problems in tomography. J Comp Appl Math 42:17–35MATHCrossRefGoogle Scholar
  57. 57.
    Kress R (2002) Electromagnetic waves scattering. In: Pike R, Sabatier P (eds) Scattering. Academic, New YorkGoogle Scholar
  58. 58.
    Kress R (2003) Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Prob 19:91–104MathSciNetCrossRefGoogle Scholar
  59. 59.
    Kress R, Rundell W (2001) Inverse scattering for shape and impedance. Inverse Prob 17: 1075–1085MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Kress R, Rundell W (2005) Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Prob 21:1207–1223MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Langenberg K (1987) Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Sabatier P (ed) Basic methods of tomography and inverse problems. Adam Hilger, BristolGoogle Scholar
  62. 62.
    Lax PD, Phillips RS (1967) Scattering theory. Academic, New YorkMATHGoogle Scholar
  63. 63.
    Liu H (2008) A global uniqueness for formally determined electromagnetic obstacle scattering. Inverse Prob 24:035018CrossRefGoogle Scholar
  64. 64.
    Liu H, Zou J (2006) Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Prob 22:515–524MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  66. 66.
    Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordMATHCrossRefGoogle Scholar
  67. 67.
    Morse PM, Ingard KU (1961) Linear acoustic theory. In: Faugge S (ed) Encyclopedia of physics. Springer, BerlinGoogle Scholar
  68. 68.
    Mäuller C (1969) Foundations of the mathematical theory of electromagnetic waves. Springer, BerlinGoogle Scholar
  69. 69.
    Nachman A (1988) Reconstructions from boundary measurements. Ann Math 128:531–576MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Nédélec JC (2001) Acoustic and electromagnetic equations. Springer, BerlinMATHGoogle Scholar
  71. 71.
    Novikov R (1988) Multidimensional inverse spectral problems for the equation − Δψ + v(x) − Eu(x)ψ = 0. Trans Funct Anal Appl 22:263–272MATHCrossRefGoogle Scholar
  72. 72.
    Ola P, Päivärinta L, Somersalo E (1993) An inverse boundary value problem in electrodynamics. Duke Math J 70:617–653MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Ola P, Somersalo E (1996) Electromagnetic inverse problems and generalized Sommer-feld potentials. SIAM J Appl Math 56:1129–1145MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Päivärinta L, Sylvester J (2008) Transmission eigenvalues. SIAM J Math Anal 40:738–753MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Piana M (1998) On uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Prob 14:1565–1579MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Potthast R (1994) Fréchet differetiability of boundary integral operators in inverse acoustic scattering. Inverse Prob 10:431–447MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Potthast R (2001) Point-sources and multipoles in inverse scattering theory. Chapman and Hall, LondonMATHCrossRefGoogle Scholar
  78. 78.
    Potthast R (2001) On the convergence of a new Newton-type method in inverse scattering. Inverse Prob 17:1419–1434MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Potthast R (2006) A survey on sampling and probe methods for inverse problems. Inverse Prob 22:R1–R47MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Ramm A (1988) Recovery of the potential from fixed energy scattering data. Inverse Prob 4:877–886MATHCrossRefGoogle Scholar
  81. 81.
    Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Springer, BerlinMATHGoogle Scholar
  82. 82.
    Roger R (1981) Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans Antennas Prop 29:232–238MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Rondi L (2003) Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ Math J 52:1631–1662MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Rynne BP, Sleeman BD (1991) The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J Math Anal 22:1755–1762MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Serranho P (2006) A hybrid method for inverse scattering for shape and impedance. Inverse Prob 22:663–680MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Serranho P (2007) A hybrid method for inverse obstacle scattering problems. Dissertation, GäottingenGoogle Scholar
  87. 87.
    Serranho P (2007) A hybrid method for sound-soft obstacles in 3D. Inverse Prob Imaging 1: 691–712MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Stefanov P, Uhlmann G (2003) Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc Am Math Soc 132: 1351–1354MathSciNetCrossRefGoogle Scholar
  89. 89.
    Sylvester J, Uhlmann G (1987) A global uniqueness theorem for an inverse boundary value problem. Ann Math 125:153–169MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.GREYC (UMR-CNRS 6072)CAEN CedexFrance
  2. 2.Universität GöttingenGöttingenGermany

Personalised recommendations