Advertisement

Sampling Methods

  • Martin Hanke
  • Andreas Kirsch

Introduction and Historical Background

The topic of this chapter is devoted to shape identification problems, i.e., problems where the shape of an object has to be determined from indirect measurements. Such a situation typically occurs in problems of tomography, in particular electrical impedance tomography or optical tomography. For example, a current through a homogeneous object will in general induce a different potential than the same current through the same object containing an enclosed cavity. In impedance tomography, the task is to determine the shape of the cavity from measurements of the potential on the boundary of the object. For survey articles on this subject we refer to [18], [55], and to  Chap. 14 in this volume.

As a second of these fields we mention inverse scattering problemswhere one wants to detect – and identify – unknown objects through the use of acoustic, electromagnetic, or elastic waves. Similar to above, one of the important problems in inverse scattering...

Keywords

Impedance Tomography Scattered Field Field Pattern Inverse Scattering Problem Topological Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Alves C, Ammari H (2002) Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J Appl Math 62:94–106MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ammari H, Griesmaier R, Hanke M (2007) Identification of small inhomogeneities: asymptotic factorization. Math Comput 76:1425–1448MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ammari H, Iakovleva E, Lesselier D (2005) Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency. SIAM J Sci Comput 27:130–158MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ammari H, Iakovleva E, Moskow S (2003) Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency. SIAM J Math Anal 34:882–900MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ammari H, Kang H (2004) Reconstruction of small inhomogeneities from boundary measurements, vol 1846 of lecture notes in mathematics. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Ammari H, Kang H (2007) Polarization and moment tensors with applications to inverse problems and effective medium theory. Springer, New YorkMATHGoogle Scholar
  7. 7.
    Ammari H, Vogelius MS, Volkov D (2001) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J Math Pures Appl 80:769–814MathSciNetMATHGoogle Scholar
  8. 8.
    Aramini R, Brignone M, Piana M (2006) The linear sampling method without sampling. Inverse Prob 22:2237–2254MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Arens T (2001) Linear sampling methods for 2D inverse elastic wave scattering. Inverse Prob 17:1445–1464MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Arens T (2004) Why linear sampling works. Inverse Prob 20:163–173MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Arens T, Grinberg NI (2005) A complete factorization method for scattering by periodic structures. Computing 75:111–132MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Arens T, Kirsch A (2003) The Factorization Method in inverse scattering from periodic structures. Inverse Prob 19:1195–1211MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Arens T, Lechleiter A (2009) The linear sampling method revisited. J Int Equ Appl 21:179–202MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Astala K, Päivärinta L (2006) Calderón’s inverse conductivity problem in the plane. Ann Math 163:265–299MATHCrossRefGoogle Scholar
  15. 15.
    Azzouz M, Oesterlein C, Hanke M, Schilcher K (2007) The factorization method for electrical impedance tomography data from a new planar device. International J Biomedical Imaging, Article ID 83016, 7 pages, doi:10.1155/2007/83016.Google Scholar
  16. 16.
    Beretta E, Vessella S (1998) Stable determination of boundaries from Cauchy data. SIAM J Math Anal 30:220–232MathSciNetCrossRefGoogle Scholar
  17. 17.
    Van Berkel C, Lionheart WRB (2007) Reconstruction of a grounded object in an electrostatic halfspace with an indicator function. Inverse Prob Sci Eng 21:585–600CrossRefGoogle Scholar
  18. 18.
    Borcea L (2002) Electrical impedance tomography. Inverse Prob 18:R99–R136MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bourgeois L, Lunéville E (2008) The linear sampling method in a waveguide: a modal formulation. Inverse Prob 24:015018CrossRefGoogle Scholar
  20. 20.
    Brignone M, Bozza G, Aramini R, Pastorino M, Piana M (2009) A fully no-sampling formulation of the linear sampling method for three-dimensional inverse electromagnetic scattering problems. Inverse Prob 25:015014MathSciNetCrossRefGoogle Scholar
  21. 21.
    Brühl M (1999) Gebietserkennung in der elektrischen Impedanztomographie. PhD thesis, Universität Karlsruhe, KarlsruheGoogle Scholar
  22. 22.
    Brühl M (2001) Explicit characterization of inclusions in electrical impedance tomography. SIAM J Math Anal 32:1327–1341MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Brühl M, Hanke M, Pidcock M (2001) Crack detection using electrostatic measurements. Math Model Numer Anal 35:595–605MATHCrossRefGoogle Scholar
  24. 24.
    Brühl M, Hanke M, Vogelius M (2003) A direct impedance tomography algorithm for locating small inhomogeneities. Numer Math 93:635–654MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Cakoni F, Colton D (2003) The linear sampling method for cracks. Inverse Prob 19:279–295MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Cakoni F, Colton D, Haddar H (2002) The linear sampling method for anisotropic media. J Comput Appl Math 146:285–299MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Cedio-Fengya D, Moskow S, Vogelius MS (1998) Identification of conductivity imperfections of small diameter by boundary measurements. Comtinuous dependence and computational reconstruction. Inverse Prob 14:553–595MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Charalambopoulos A, Gintides D, Kiriaki K (2002) The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Prob 18:547–558MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Charalambopoulos A, Gintides D, Kiriaki K, Kirsch A (2006) The Factorization Method for an acoustic wave guide. In: 7th international workshop on mathematical methods in scattering theory and biomedical engineering. World Scientific, Singapore, pp 120–127Google Scholar
  31. 31.
    Charalambopoulus A, Kirsch A, Anagnostopoulus KA, Gintides D, Kiriaki K (2007) The Factorization Method in inverse elastic scattering from penetrable bodies. Inverse Prob 23:27–51CrossRefGoogle Scholar
  32. 32.
    Cheney M (2001) The linear sampling method and the MUSIC algorithm. Inverse Prob 17:591–596MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Collino F, Fares M, Haddar H (2003) Numerical and analytical study of the linear sampling method in electromagnetic inverse scattering problems. Inverse Prob 19:1279–1298MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Colton D, Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J Sci Comput 24:719–731MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Prob 12:383–393MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, BerlinMATHGoogle Scholar
  37. 37.
    Colton D, Kress R (2006) Using fundamental solutions in inverse scattering. Inverse Prob 22:R49–R66MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Colton D, Päivärinta L (1992) The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch Ration Mech Anal 119:59–70MATHCrossRefGoogle Scholar
  39. 39.
    Devaney AJ (2000) Super-resolution processing of multi-static data using time reversal and MUSIC. Unpublished manuscriptGoogle Scholar
  40. 40.
    Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, DordrechtMATHCrossRefGoogle Scholar
  41. 41.
    Fata SN, Guzina BB (2004) A linear sampling method for near field inverse problems in elastodynamics. Inverse Prob 20:713–736MATHCrossRefGoogle Scholar
  42. 42.
    Friedman A, Vogelius MS (1989) Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch Ration Mech Anal 105:299–326MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Gebauer B, Hyvönen N (2007) Factorization method and irregular inclusions in electrical impedance tomography. Inverse Prob 23:2159–2170MATHCrossRefGoogle Scholar
  44. 44.
    Gebauer B, Hyvönen N (2008) Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Prob Imaging 2:355–372MATHCrossRefGoogle Scholar
  45. 45.
    Gebauer S (2006) The factorization method for real elliptic problems. Z Anal Anwend 25:81–102MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Girault V, Raviart P-A (1986) Finite element methods for Navier–Stokes equations. Springer, BerlinMATHCrossRefGoogle Scholar
  47. 47.
    Griesmaier R (2008) An asymptotic factorization method for detecting small objects using electromagnetic scattering. SIAM J Appl Math 68:1378–1403MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Griesmaier R (2010) Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci 3:340–362MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Grinberg N (2001) Obstacle localization in an homogeneous half-space. Inverse Prob 17:1113–1125MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Grinberg N (2002) Obstacle visualization via the factorization method for the mixed boundary value problem. Inverse Prob 18:1687–1704MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Guzina BB, Bonnet M (2004) Topological derivative for the inverse scattering of elastic waves. Q J Mech Appl Math 57:161–179MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob 18:891–906MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Hähner P (1999) An inverse problem in electrostatics. Inverse Prob 15:961–975MATHCrossRefGoogle Scholar
  54. 54.
    Hanke M (2008) Why linear sampling really seems to work. Inverse Prob Imaging 2:373–395MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Hanke M, Brühl M (2003) Recent progress in electrical impedance tomography. Inverse Prob 19:S65–S90MATHCrossRefGoogle Scholar
  56. 56.
    Hanke M, Schappel B (2008) The factorization method for electrical impedance tomography in the half space. SIAM J Appl Math 68:907–924MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Harrach B, Seo JK (2009) Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J Appl Math 69:1662–1681MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Hettlich F (1995) Fréchet derivatives in inverse obstacle scattering. Inverse Prob 11:371–382MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Hettlich F, Rundell W (2000) A second degree method for nonlinear inverse problems. SIAM J Numer Anal 37:587–620MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Hyvönen N (2004) Characterizing inclusions in optical tomography. Inverse Prob 20:737–751MATHCrossRefGoogle Scholar
  61. 61.
    Hyvönen N (2009) Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math Models Methods Appl Sci 19:1185–1202MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Ikehata M (1998) Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Prob 14:949–954MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Ikehata M (1998) Reconstruction of the shape of the inclusion by boundary measurements. Commun Part Diff Eq 23:1459–1474MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Ikehata M (1998) Size estimation of inclusions. J Inverse Ill-Posed Prob 6:127–140MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative regularization methods for nonlinear ill-posed problems. de Gruyter, BerlinGoogle Scholar
  66. 66.
    Kirsch A (1993) The domain derivative and two applications in inverse scattering theory. Inverse Prob 9:81–96MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob 14:1489–1512MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Kirsch A (1999) Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob 15:413–429MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Kirsch A (2000) New characterizations of solutions in inverse scattering theory. Appl Anal 76:319–350MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Kirsch A (2002) The MUSIC-algorithm and the Factorization Method in inverse scattering theory for inhomogeneous media. Inverse Prob 18:1025–1040MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Kirsch A (2004) The Factorization Method for a class of inverse elliptic problems. Math Nachr 278:258–277MathSciNetCrossRefGoogle Scholar
  72. 72.
    Kirsch A (2007) An integral equation for Maxwell’s equations in a layered medium with an application to the Factorization Method. J Int Equ Appl 19:333–358MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Kirsch A (2007) An integral equation for the scattering problem for an anisotropic medium and the Factorization Method. In: 8th international workshop on mathematical methods in scattering theory and biomedical engineering. World Scientific, Singapore, pp 57–70Google Scholar
  74. 74.
    Kirsch A, Grinberg N (2008) The factorization method for inverse problems. Oxford lecture series in mathematics and its applications, vol 36. Oxford University Press, OxfordGoogle Scholar
  75. 75.
    Kirsch A, Ritter S (2000) A linear sampling method for inverse scattering from an open arc. Inverse Prob 16:89–105MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Kress R, Kühn L (2002) Linear sampling methods for inverse boundary value problems in potential theory. Appl Numer Math 43:161–173MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Lechleiter A (2009) The factorization method is independent of transmission eigenvalues. Inverse Prob Imaging 3:123–138MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Lechleiter A, Hyvönen N, Hakula H (2008) The factorization method applied to the complete electrode model of impedance tomography. SIAM J Appl Math 68:1097–1121MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Lukaschewitsch M, Maass P, Pidcock M (2003) Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Prob 19:585–610MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Luke R, Potthast R (2003) The no response test – a sampling method for inverse scattering problems. SIAM J Appl Math 63:1292–1312MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    McLean W (2000) Strongly elliptic systems and boundary integral operators. Cambridge University Press, CambridgeGoogle Scholar
  82. 82.
    Monk P (2003) Finite element methods for Maxwell’s equations. Oxford Science, OxfordMATHCrossRefGoogle Scholar
  83. 83.
    Nachman AI, Päivärinta L, Teirilä A (2007) On imaging obstacles inside inhomogeneous media. J Funct Anal 252:490–516MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Pike R, Sabatier P (2002) Scattering: scattering and inverse scattering in pure and applied science. Academic, New York/LondonMATHGoogle Scholar
  85. 85.
    Pironneau O (1984) Optimal shape design for elliptic systems. Springer, New YorkMATHGoogle Scholar
  86. 86.
    Potthast R (1996) A fast new method to solve inverse scattering problems. Inverse Prob 12:731–742MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Potthast R (2001) Point sources and multipoles in inverse scattering theory. Chapman & Hall/CRC, Boca RatonMATHCrossRefGoogle Scholar
  88. 88.
    Potthast R (2006) A survey on sampling and probe methods for inverse problems. Inverse Prob 22:R1–R47MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Ringrose JR (1971) Compact non-self-adjoint operators. Van Nostrand Reinhold, LondonMATHGoogle Scholar
  90. 90.
    Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. Springer, New YorkMATHCrossRefGoogle Scholar
  91. 91.
    Therrien CW (1992) Discrete random signals and statistical signal processing. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  92. 92.
    Vogelius MS, Volkov D (2000) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. M2AN 79:723–748Google Scholar
  93. 93.
    Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25:79–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Hanke
    • 1
  • Andreas Kirsch
    • 2
  1. 1.Bonn UniversityBonnGermany
  2. 2.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations