Skip to main content

Sampling Methods

  • Reference work entry

Introduction and Historical Background

The topic of this chapter is devoted to shape identification problems, i.e., problems where the shape of an object has to be determined from indirect measurements. Such a situation typically occurs in problems of tomography, in particular electrical impedance tomography or optical tomography. For example, a current through a homogeneous object will in general induce a different potential than the same current through the same object containing an enclosed cavity. In impedance tomography, the task is to determine the shape of the cavity from measurements of the potential on the boundary of the object. For survey articles on this subject we refer to [18], [55], and to Chap. 14 in this volume.

As a second of these fields we mention inverse scattering problemswhere one wants to detect – and identify – unknown objects through the use of acoustic, electromagnetic, or elastic waves. Similar to above, one of the important problems in inverse scattering...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Further Reading

  1. Alves C, Ammari H (2002) Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J Appl Math 62:94–106

    Article  MathSciNet  Google Scholar 

  2. Ammari H, Griesmaier R, Hanke M (2007) Identification of small inhomogeneities: asymptotic factorization. Math Comput 76:1425–1448

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammari H, Iakovleva E, Lesselier D (2005) Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency. SIAM J Sci Comput 27:130–158

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari H, Iakovleva E, Moskow S (2003) Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency. SIAM J Math Anal 34:882–900

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammari H, Kang H (2004) Reconstruction of small inhomogeneities from boundary measurements, vol 1846 of lecture notes in mathematics. Springer, New York

    Book  Google Scholar 

  6. Ammari H, Kang H (2007) Polarization and moment tensors with applications to inverse problems and effective medium theory. Springer, New York

    MATH  Google Scholar 

  7. Ammari H, Vogelius MS, Volkov D (2001) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J Math Pures Appl 80:769–814

    MathSciNet  MATH  Google Scholar 

  8. Aramini R, Brignone M, Piana M (2006) The linear sampling method without sampling. Inverse Prob 22:2237–2254

    Article  MathSciNet  MATH  Google Scholar 

  9. Arens T (2001) Linear sampling methods for 2D inverse elastic wave scattering. Inverse Prob 17:1445–1464

    Article  MathSciNet  MATH  Google Scholar 

  10. Arens T (2004) Why linear sampling works. Inverse Prob 20:163–173

    Article  MathSciNet  MATH  Google Scholar 

  11. Arens T, Grinberg NI (2005) A complete factorization method for scattering by periodic structures. Computing 75:111–132

    Article  MathSciNet  MATH  Google Scholar 

  12. Arens T, Kirsch A (2003) The Factorization Method in inverse scattering from periodic structures. Inverse Prob 19:1195–1211

    Article  MathSciNet  MATH  Google Scholar 

  13. Arens T, Lechleiter A (2009) The linear sampling method revisited. J Int Equ Appl 21:179–202

    Article  MathSciNet  MATH  Google Scholar 

  14. Astala K, Päivärinta L (2006) Calderón’s inverse conductivity problem in the plane. Ann Math 163:265–299

    Article  MATH  Google Scholar 

  15. Azzouz M, Oesterlein C, Hanke M, Schilcher K (2007) The factorization method for electrical impedance tomography data from a new planar device. International J Biomedical Imaging, Article ID 83016, 7 pages, doi:10.1155/2007/83016.

    Google Scholar 

  16. Beretta E, Vessella S (1998) Stable determination of boundaries from Cauchy data. SIAM J Math Anal 30:220–232

    Article  MathSciNet  Google Scholar 

  17. Van Berkel C, Lionheart WRB (2007) Reconstruction of a grounded object in an electrostatic halfspace with an indicator function. Inverse Prob Sci Eng 21:585–600

    Article  Google Scholar 

  18. Borcea L (2002) Electrical impedance tomography. Inverse Prob 18:R99–R136

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourgeois L, Lunéville E (2008) The linear sampling method in a waveguide: a modal formulation. Inverse Prob 24:015018

    Article  Google Scholar 

  20. Brignone M, Bozza G, Aramini R, Pastorino M, Piana M (2009) A fully no-sampling formulation of the linear sampling method for three-dimensional inverse electromagnetic scattering problems. Inverse Prob 25:015014

    Article  MathSciNet  Google Scholar 

  21. Brühl M (1999) Gebietserkennung in der elektrischen Impedanztomographie. PhD thesis, Universität Karlsruhe, Karlsruhe

    Google Scholar 

  22. Brühl M (2001) Explicit characterization of inclusions in electrical impedance tomography. SIAM J Math Anal 32:1327–1341

    Article  MathSciNet  MATH  Google Scholar 

  23. Brühl M, Hanke M, Pidcock M (2001) Crack detection using electrostatic measurements. Math Model Numer Anal 35:595–605

    Article  MATH  Google Scholar 

  24. Brühl M, Hanke M, Vogelius M (2003) A direct impedance tomography algorithm for locating small inhomogeneities. Numer Math 93:635–654

    Article  MathSciNet  MATH  Google Scholar 

  25. Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301

    Article  MathSciNet  MATH  Google Scholar 

  26. Cakoni F, Colton D (2003) The linear sampling method for cracks. Inverse Prob 19:279–295

    Article  MathSciNet  MATH  Google Scholar 

  27. Cakoni F, Colton D, Haddar H (2002) The linear sampling method for anisotropic media. J Comput Appl Math 146:285–299

    Article  MathSciNet  MATH  Google Scholar 

  28. Cedio-Fengya D, Moskow S, Vogelius MS (1998) Identification of conductivity imperfections of small diameter by boundary measurements. Comtinuous dependence and computational reconstruction. Inverse Prob 14:553–595

    Article  MathSciNet  MATH  Google Scholar 

  29. Charalambopoulos A, Gintides D, Kiriaki K (2002) The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Prob 18:547–558

    Article  MathSciNet  MATH  Google Scholar 

  30. Charalambopoulos A, Gintides D, Kiriaki K, Kirsch A (2006) The Factorization Method for an acoustic wave guide. In: 7th international workshop on mathematical methods in scattering theory and biomedical engineering. World Scientific, Singapore, pp 120–127

    Google Scholar 

  31. Charalambopoulus A, Kirsch A, Anagnostopoulus KA, Gintides D, Kiriaki K (2007) The Factorization Method in inverse elastic scattering from penetrable bodies. Inverse Prob 23:27–51

    Article  Google Scholar 

  32. Cheney M (2001) The linear sampling method and the MUSIC algorithm. Inverse Prob 17:591–596

    Article  MathSciNet  MATH  Google Scholar 

  33. Collino F, Fares M, Haddar H (2003) Numerical and analytical study of the linear sampling method in electromagnetic inverse scattering problems. Inverse Prob 19:1279–1298

    Article  MathSciNet  MATH  Google Scholar 

  34. Colton D, Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J Sci Comput 24:719–731

    Article  MathSciNet  MATH  Google Scholar 

  35. Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Prob 12:383–393

    Article  MathSciNet  MATH  Google Scholar 

  36. Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  37. Colton D, Kress R (2006) Using fundamental solutions in inverse scattering. Inverse Prob 22:R49–R66

    Article  MathSciNet  MATH  Google Scholar 

  38. Colton D, Päivärinta L (1992) The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch Ration Mech Anal 119:59–70

    Article  MATH  Google Scholar 

  39. Devaney AJ (2000) Super-resolution processing of multi-static data using time reversal and MUSIC. Unpublished manuscript

    Google Scholar 

  40. Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  41. Fata SN, Guzina BB (2004) A linear sampling method for near field inverse problems in elastodynamics. Inverse Prob 20:713–736

    Article  MATH  Google Scholar 

  42. Friedman A, Vogelius MS (1989) Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch Ration Mech Anal 105:299–326

    Article  MathSciNet  MATH  Google Scholar 

  43. Gebauer B, Hyvönen N (2007) Factorization method and irregular inclusions in electrical impedance tomography. Inverse Prob 23:2159–2170

    Article  MATH  Google Scholar 

  44. Gebauer B, Hyvönen N (2008) Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Prob Imaging 2:355–372

    Article  MATH  Google Scholar 

  45. Gebauer S (2006) The factorization method for real elliptic problems. Z Anal Anwend 25:81–102

    Article  MathSciNet  MATH  Google Scholar 

  46. Girault V, Raviart P-A (1986) Finite element methods for Navier–Stokes equations. Springer, Berlin

    Book  MATH  Google Scholar 

  47. Griesmaier R (2008) An asymptotic factorization method for detecting small objects using electromagnetic scattering. SIAM J Appl Math 68:1378–1403

    Article  MathSciNet  MATH  Google Scholar 

  48. Griesmaier R (2010) Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci 3:340–362

    Article  MathSciNet  MATH  Google Scholar 

  49. Grinberg N (2001) Obstacle localization in an homogeneous half-space. Inverse Prob 17:1113–1125

    Article  MathSciNet  MATH  Google Scholar 

  50. Grinberg N (2002) Obstacle visualization via the factorization method for the mixed boundary value problem. Inverse Prob 18:1687–1704

    Article  MathSciNet  MATH  Google Scholar 

  51. Guzina BB, Bonnet M (2004) Topological derivative for the inverse scattering of elastic waves. Q J Mech Appl Math 57:161–179

    Article  MathSciNet  MATH  Google Scholar 

  52. Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob 18:891–906

    Article  MathSciNet  MATH  Google Scholar 

  53. Hähner P (1999) An inverse problem in electrostatics. Inverse Prob 15:961–975

    Article  MATH  Google Scholar 

  54. Hanke M (2008) Why linear sampling really seems to work. Inverse Prob Imaging 2:373–395

    Article  MathSciNet  MATH  Google Scholar 

  55. Hanke M, Brühl M (2003) Recent progress in electrical impedance tomography. Inverse Prob 19:S65–S90

    Article  MATH  Google Scholar 

  56. Hanke M, Schappel B (2008) The factorization method for electrical impedance tomography in the half space. SIAM J Appl Math 68:907–924

    Article  MathSciNet  MATH  Google Scholar 

  57. Harrach B, Seo JK (2009) Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J Appl Math 69:1662–1681

    Article  MathSciNet  MATH  Google Scholar 

  58. Hettlich F (1995) Fréchet derivatives in inverse obstacle scattering. Inverse Prob 11:371–382

    Article  MathSciNet  MATH  Google Scholar 

  59. Hettlich F, Rundell W (2000) A second degree method for nonlinear inverse problems. SIAM J Numer Anal 37:587–620

    Article  MathSciNet  MATH  Google Scholar 

  60. Hyvönen N (2004) Characterizing inclusions in optical tomography. Inverse Prob 20:737–751

    Article  MATH  Google Scholar 

  61. Hyvönen N (2009) Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math Models Methods Appl Sci 19:1185–1202

    Article  MathSciNet  MATH  Google Scholar 

  62. Ikehata M (1998) Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Prob 14:949–954

    Article  MathSciNet  MATH  Google Scholar 

  63. Ikehata M (1998) Reconstruction of the shape of the inclusion by boundary measurements. Commun Part Diff Eq 23:1459–1474

    Article  MathSciNet  MATH  Google Scholar 

  64. Ikehata M (1998) Size estimation of inclusions. J Inverse Ill-Posed Prob 6:127–140

    Article  MathSciNet  MATH  Google Scholar 

  65. Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative regularization methods for nonlinear ill-posed problems. de Gruyter, Berlin

    Google Scholar 

  66. Kirsch A (1993) The domain derivative and two applications in inverse scattering theory. Inverse Prob 9:81–96

    Article  MathSciNet  MATH  Google Scholar 

  67. Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob 14:1489–1512

    Article  MathSciNet  MATH  Google Scholar 

  68. Kirsch A (1999) Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob 15:413–429

    Article  MathSciNet  MATH  Google Scholar 

  69. Kirsch A (2000) New characterizations of solutions in inverse scattering theory. Appl Anal 76:319–350

    Article  MathSciNet  MATH  Google Scholar 

  70. Kirsch A (2002) The MUSIC-algorithm and the Factorization Method in inverse scattering theory for inhomogeneous media. Inverse Prob 18:1025–1040

    Article  MathSciNet  MATH  Google Scholar 

  71. Kirsch A (2004) The Factorization Method for a class of inverse elliptic problems. Math Nachr 278:258–277

    Article  MathSciNet  Google Scholar 

  72. Kirsch A (2007) An integral equation for Maxwell’s equations in a layered medium with an application to the Factorization Method. J Int Equ Appl 19:333–358

    Article  MathSciNet  MATH  Google Scholar 

  73. Kirsch A (2007) An integral equation for the scattering problem for an anisotropic medium and the Factorization Method. In: 8th international workshop on mathematical methods in scattering theory and biomedical engineering. World Scientific, Singapore, pp 57–70

    Google Scholar 

  74. Kirsch A, Grinberg N (2008) The factorization method for inverse problems. Oxford lecture series in mathematics and its applications, vol 36. Oxford University Press, Oxford

    Google Scholar 

  75. Kirsch A, Ritter S (2000) A linear sampling method for inverse scattering from an open arc. Inverse Prob 16:89–105

    Article  MathSciNet  MATH  Google Scholar 

  76. Kress R, Kühn L (2002) Linear sampling methods for inverse boundary value problems in potential theory. Appl Numer Math 43:161–173

    Article  MathSciNet  MATH  Google Scholar 

  77. Lechleiter A (2009) The factorization method is independent of transmission eigenvalues. Inverse Prob Imaging 3:123–138

    Article  MathSciNet  MATH  Google Scholar 

  78. Lechleiter A, Hyvönen N, Hakula H (2008) The factorization method applied to the complete electrode model of impedance tomography. SIAM J Appl Math 68:1097–1121

    Article  MathSciNet  MATH  Google Scholar 

  79. Lukaschewitsch M, Maass P, Pidcock M (2003) Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Prob 19:585–610

    Article  MathSciNet  MATH  Google Scholar 

  80. Luke R, Potthast R (2003) The no response test – a sampling method for inverse scattering problems. SIAM J Appl Math 63:1292–1312

    Article  MathSciNet  MATH  Google Scholar 

  81. McLean W (2000) Strongly elliptic systems and boundary integral operators. Cambridge University Press, Cambridge

    Google Scholar 

  82. Monk P (2003) Finite element methods for Maxwell’s equations. Oxford Science, Oxford

    Book  MATH  Google Scholar 

  83. Nachman AI, Päivärinta L, Teirilä A (2007) On imaging obstacles inside inhomogeneous media. J Funct Anal 252:490–516

    Article  MathSciNet  MATH  Google Scholar 

  84. Pike R, Sabatier P (2002) Scattering: scattering and inverse scattering in pure and applied science. Academic, New York/London

    MATH  Google Scholar 

  85. Pironneau O (1984) Optimal shape design for elliptic systems. Springer, New York

    MATH  Google Scholar 

  86. Potthast R (1996) A fast new method to solve inverse scattering problems. Inverse Prob 12:731–742

    Article  MathSciNet  MATH  Google Scholar 

  87. Potthast R (2001) Point sources and multipoles in inverse scattering theory. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  88. Potthast R (2006) A survey on sampling and probe methods for inverse problems. Inverse Prob 22:R1–R47

    Article  MathSciNet  MATH  Google Scholar 

  89. Ringrose JR (1971) Compact non-self-adjoint operators. Van Nostrand Reinhold, London

    MATH  Google Scholar 

  90. Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. Springer, New York

    Book  MATH  Google Scholar 

  91. Therrien CW (1992) Discrete random signals and statistical signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  92. Vogelius MS, Volkov D (2000) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. M2AN 79:723–748

    Google Scholar 

  93. Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25:79–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hanke, M., Kirsch, A. (2011). Sampling Methods. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_12

Download citation

Publish with us

Policies and ethics