Linear Inverse Problems

  • Charles Groetsch


This introductory treatment of linear inverse problems is aimed at students and neophytes. An historical survey of inverse problems and some examples of model inverse problems related to imaging are discussed to furnish context and texture to the mathematical theory that follows. The development takes place within the sphere of the theory of compact linear operators on Hilbert space and the singular value decomposition plays an essential role. The primary concern is regularization theory: the construction of convergent well-posed approximations to ill-posed problems. For the most part, the discussion is limited to the familiar regularization method devised by Tikhonov and Phillips.


Inverse Problem Singular Value Decomposition Tikhonov Regularization Finite Rank Extrasolar Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambarzumian V (1936) On the derivation of the frequency function of space velocities of the stars from the observed radial velocities. Mon Not R Astron Soc Lond 96:172–179Google Scholar
  2. 2.
    Anderssen RS (2004) Inverse problems: a pragmatist’s approach to the recovery of information from indirect measurements. Aust NZ Ind Appl Math J 46:588–622MathSciNetGoogle Scholar
  3. 3.
    Aster R, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier, BostonMATHGoogle Scholar
  4. 4.
    Bennett A (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  5. 5.
    Ben-Israel A (2002) The Moore of the Moore penrose inverse. Electron J Linear Algebr 9:150–157MathSciNetMATHGoogle Scholar
  6. 6.
    Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. IOP, LondonMATHCrossRefGoogle Scholar
  7. 7.
    Bonilla L (ed) (2008) Inverse problems and imaging, LNM1943. Springer, BerlinGoogle Scholar
  8. 8.
    Carasso A, Sanderson J, Hyman J (1978) Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J Numer Anal 15:344–367MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chalmond B (2003) Modeling and inverse problems in image analysis. Springer, New YorkMATHGoogle Scholar
  10. 10.
    Chan TF, Shen J (2005) Image processing and analysis. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  11. 11.
    Chen Z, Xu Y, Yang H (2008) Fast collocation methods for solving ill-posed integral equations of the first kind, Inverse Probl 24:065007(21)Google Scholar
  12. 12.
    Cormack A (1963) Representation of a function by its line integrals, with some radiological applications I. J Appl Phys 34:2722–2727MATHCrossRefGoogle Scholar
  13. 13.
    Cormack A (1964) Representation of a function by its line integrals, with some radiological applications II. J Appl Phys 35:2908–2912MATHCrossRefGoogle Scholar
  14. 14.
    Cormack A. Computed tomography: some history and recent developments, in [64], pp 35–42Google Scholar
  15. 15.
    Courant R, Hilbert D (1962) Methods of mathematical physics, vol 2. Partial Differential Equations, Interscience, New YorkMATHGoogle Scholar
  16. 16.
    Craig I, Brown J (1986) Inverse problems in astronomy. Adam Hilger, BristolMATHGoogle Scholar
  17. 17.
    Deans SR (1983) The radon transform and some of its applications. Wiley, New YorkMATHGoogle Scholar
  18. 18.
    Deutsch F (2001) Best approximation in inner product spaces. Springer, New YorkMATHGoogle Scholar
  19. 19.
    Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, DordrechtMATHCrossRefGoogle Scholar
  20. 20.
    Epstein CL (2003) Introduction to the mathematics of medical imaging. Pearson Education, Upper Saddle RiverMATHGoogle Scholar
  21. 21.
    Galilei G (1610) Sidereus Nuncius (trans: Albert van Helden). University of Chicago Press, Chicago, 1989Google Scholar
  22. 22.
    Gates E (2009) Einstein’s telescope. W.W. Norton, New YorkGoogle Scholar
  23. 23.
    Gladwell GML (1986) Inverse problems in vibration. Martinus Nijhoff, DordrechtMATHGoogle Scholar
  24. 24.
    Glasko V (1984) Inverse problems of mathematical physics (trans: Bincer A (Russian)), American Institute of Physics, New YorkGoogle Scholar
  25. 25.
    Goldberg RR (1961) Fourier transforms. Cambridge University Press, CambridgeMATHGoogle Scholar
  26. 26.
    Groetsch CW (1983) Comments on Morozov’s discrepancy principle. In: Hämmerlin G, Hoffmann K-H (eds) Improperly posed problems and their numerical treatment. Birkhäuser, Basel, pp 97–104Google Scholar
  27. 27.
    Groetsch CW (1983) On the asymptotic order of convergence of Tikhonov regularization. J Optim Theory Appl 41:293–298MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Groetsch CW (1984) The theory of Tikhonov regularization for Fredholm equations of the first kind. Pitman, BostonMATHGoogle Scholar
  29. 29.
    Groetsch CW (1990) Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integr Equ Oper Theory 13:67–75MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Groetsch CW (1993) Inverse problems in the mathematical sciences. Vieweg, BraunschweigMATHGoogle Scholar
  31. 31.
    Groetsch CW (2003) The delayed emergence of regularization theory. Bollettino di Storia delle Scienze Matematiche 23:105–120MathSciNetMATHGoogle Scholar
  32. 32.
    Groetsch CW (2004) Nascent function concepts in Nova Scientia. Int J Math Educ Sci Tech 35:867–875MathSciNetCrossRefGoogle Scholar
  33. 33.
    Groetsch CW (2009) Extending Halley’s problem. Math Sci 34:4–10MathSciNetMATHGoogle Scholar
  34. 34.
    Groetsch CW, Neubauer A (1989) Regularization of ill-posed problems: optimal parameter choice in finite dimensions. J Approx Theory 58: 184–200MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Groetsch CW (2007) Stable approximate evaluation of unbounded operators, LNM 1894. Springer, New YorkGoogle Scholar
  36. 36.
    Grosser M (1962) The discovery of neptune. Harvard University Press, CambridgeGoogle Scholar
  37. 37.
    Hadamard J (1902) Sur les problèmes aux dériveès partielles et leur signification physique, Princeton University Bulletin. Princeton University Bull No. 13:49–52MathSciNetGoogle Scholar
  38. 38.
    Hadamard J (1923) Lectures on Cauchy’s problems in linear partial differential equations. Yale University Press, New Haven (Reprinted by Dover, New York, 1952.)Google Scholar
  39. 39.
    Halley E (1686) A discourse concerning gravity, and its properties, wherein the descent of heavy bodies, and the motion of projects is briey, but fully handled: together with the solution of a problem of great use in gunnery. Philos Trans R Soc Lond 16:3–21CrossRefGoogle Scholar
  40. 40.
    Hanke M (2000) Iterative regularization techniques in image reconstruction. In: Colton D et al (eds) Surveys on solution methods for inverse problems. Springer, Vienna, pp 35–52CrossRefGoogle Scholar
  41. 41.
    Hanke M, Groetsch CW (1998) Nonstationary iterated Tikhonov regularization. J Optim Theory Appl 98:37–53MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Hanke M, Neubauer A, Scherzer O (1995) A convergence analysis of Landweber iteration for nonlinear ill-posed problems. Numer Math 72: 21–37MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Hansen PC, Nagy J, O’Leary D (2006) Deblurring images: matrices, spectra, and filtering. SIAM, PhiladelphiaMATHGoogle Scholar
  44. 44.
    Hansen PC (1997) Rank deficient and discrete ill-posed problems. SIAM, PhiladelphiaMATHGoogle Scholar
  45. 45.
    Hensel E (1991) Inverse theory and applications for engineers. Prentice-Hall, Englewood CliffsGoogle Scholar
  46. 46.
    Hofmann B (1986) Regularization for applied inverse and ill-posed problems. Teubner, LeipzigMATHGoogle Scholar
  47. 47.
    Joachimstahl F (1861) Über ein attractionsproblem. J für die reine und angewandte Mathematik 58:135–137CrossRefGoogle Scholar
  48. 48.
    Kaczmarz S (1937), Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l’Academie Polonaise des Sciences, Cl. d. Sc. Mathém. A, pp 355–357Google Scholar
  49. 49.
    Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative regularization methods for nonlinear Ill-posed problems. Walter de Gruyter, BerlinMATHCrossRefGoogle Scholar
  50. 50.
    Kirsch A (1993) An introduction to the mathematical theory of inverse problems. Springer, New YorkGoogle Scholar
  51. 51.
    Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73:615–624MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Lewitt RM, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91: 1588–1611CrossRefGoogle Scholar
  53. 53.
    Morozov VA (1966) On the solution of functional equations by the method of regularization. Sov Math Doklady 7:414–417MATHGoogle Scholar
  54. 54.
    Nashed MZ (ed) (1976) Generalized inverses and applications. Academic, New YorkMATHGoogle Scholar
  55. 55.
    Natterer F, Wübberling F (2001) Mathematical methods in image reconstruction. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  56. 56.
    Newbury P, Spiteri R (2002) Inverting gravitational lenses. SIAM Rev 44:111–130MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Parks PC, Kaczmarz S (1993) 1895–1939. Int J Control 57:1263–1267MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Parker RL (1994) Geophysical inverse theory. Princeton University Press, PrincetonMATHGoogle Scholar
  59. 59.
    Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Picard E (1910) Sur un théorème général relatif aux équations intégrales de premiére espéce et sur quelques probl_emes de physique mathématique. Rendiconti del Cicolo Matematico di Palermo 29:79–97MATHCrossRefGoogle Scholar
  61. 61.
    Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellshaft der Wissenschaften zur Leipzig 69:262–277Google Scholar
  62. 62.
    Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2009) Variational methods in imaging. Springer, New YorkMATHGoogle Scholar
  63. 63.
    Sheehan W, Kollerstrom N, Waff C (2004) The case of the pilfered planet: did the British steal Neptune? Scient Am, pp 90–99Google Scholar
  64. 64.
    Shepp LA (ed) (1983) Computed tomography, proceedings of symposia in applied mathematics, vol 27. American Mathematical Society, ProvidenceGoogle Scholar
  65. 65.
    Stewart GW (1993) On the early history of the singular value decomposition. SIAM Rev 35:551–566MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Tikhonov AN (1943) On the stability of inverse problems. Dokl Akad Nau SSSR 39:176–179MathSciNetMATHGoogle Scholar
  67. 67.
    Tihonov (Tikhonov) AN (1963) Solution of incorrectly formulated problems and the regularization method, Sov Math Doklady 4:1035-1038Google Scholar
  68. 68.
    Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed Problems. Winston & Sons, WashingtonMATHGoogle Scholar
  69. 69.
    Uhlmann G (ed) (2003) Inside out: inverse problems and applications. Cambridge University Press, New YorkMATHGoogle Scholar
  70. 70.
    Vogel CR (2002) Computational methods for inverse problems. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  71. 71.
    Wing GM (1992) A primer on integral equations of the first kind: the problem of deconvolution and unfolding. SIAM, PhiladelphiaGoogle Scholar
  72. 72.
    Wrenn FR, Good ML, Handler P (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113:525–527CrossRefGoogle Scholar
  73. 73.
    Wunsch C (1996) The ocean circulation inverse problem, Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Charles Groetsch
    • 1
  1. 1.The CitadelCharleston, SCUSA

Personalised recommendations