Skip to main content

Prebiotic Potential of Xylo-Oligosaccharides

  • Reference work entry
Prebiotics and Probiotics Science and Technology

Abstract

Xylo-oligosaccharides (XOS) are chains of xylose molecules linked with β1–4 bonds (Figure 8.1 ) with degree of polymerization ranging from 2 to 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACF :

aberrant crypt foci

AcXOS :

acetylated xylo-oligosaccharides

AXOS :

arabinoxylo-oligosaccharides

DMH :

1,2-dimethylhydrazine

dp :

degree of polymerization

FOS :

fructo-oligosaccharides

GlcA(me)XOS :

xylo-oligosaccharides containing a 4-O-methylglucuronic acid group

GOS :

galacto-oligosaccharides

IMO :

isomalto-oligosaccharides

nXOS :

non-substituted xylo-oligosaccharides

OD :

optical density

SCFA :

short chain fatty acids

SOS :

soybean oligosaccharides

TOS :

transgalacto-oligosaccharides

XOS :

xylo-oligosaccharides

References

  • Alonso JL, Domínguez H, Garrote G, Parajó JC, Vázquez MJ (2003) Xylo-oligosaccharides: properties and production technologies. Electron J Environ Agric Food Chem 2:230–232

    Google Scholar 

  • Campbell JM, Fahey GC, Jr, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    CAS  Google Scholar 

  • Chung YC, Hsu CK, Ko CY, Chan YC (2007) Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 27:756–761

    Article  CAS  Google Scholar 

  • Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  CAS  Google Scholar 

  • Fujikava S, Okazaki M, Matsumoto N (1991) Effect of xylooligosaccharide on growth of intestinal bacteria and putrefaction products. J Jpn Soc Nutr Food Sci 44:37–40 (in Japanese, abstract in English)

    Google Scholar 

  • Gibson G, Probert H, Van Loo J, Roberfroid MB, Rastall RA (2004) Dietary modulation of thehuman colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  Google Scholar 

  • Hopkins M Cummings JH, Macfarlane GT (1998) Inter-species differences in maximum spesific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J Appl Microbiol 85:381–386

    Article  CAS  Google Scholar 

  • Howard M, Gordon D, Garleb KA, Kerley MS (1995) Dietary fructooligosaccharide, xylooligosaccharide and gum arabic have variable effects on cecal and colonic microbiota and epithelial cell proliferation in mice and rats. J Nutr 125:2604–2609

    CAS  Google Scholar 

  • Hsu C, Liao J, Chung Y, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528

    CAS  Google Scholar 

  • Iino T, Nishijima Y, Sawada S, Sasaki H, Harada H, Suwa Y, Kiso Y (1997) Improvement of constipation by a small amount of xylooligosaccharides ingestion in adult women. J Jpn Assoc Dietary Fiber Res 1:19–24 (in Japanese, abstract in English)

    Google Scholar 

  • Imaizumi K, Nakatsu Y, Sato M, Sedarnawati Y, Sugano M (1991) Effects of Xylooligosaccharides on Blood Glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric Biol Chem 55:199–205

    CAS  Google Scholar 

  • Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K (1998) Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 49:175–181

    Article  CAS  Google Scholar 

  • Kabel M, Kortenoeven L, Schols HA, Voragen AG (2002) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210

    Article  CAS  Google Scholar 

  • Kobayashi T, Okazaki M, Fujikawa S, Koga K (1991) Effect of Xylooligosaccharides on Feces of Men. J Jpn Soc Biosci Biotech Agrochem 65:1651–1653 (in Japanese, abstract in English)

    CAS  Google Scholar 

  • Koga K, Fujikawa S (1993) Xylo-oligosaccharides In: Nakakuki T Oligosaccharides: Production, Properties and Applications, Japanese Technology Reviews. Gordon and Breach Science Publishers, Yverdon, pp. 130–143

    Google Scholar 

  • Kontula P, von Wright A, Mattila-Sandholm, T (1998) Oat bran beta-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Int J Food Microbiol 45:163–169

    Article  CAS  Google Scholar 

  • Mintel, Global new products database (gnpd), www.gnpd.com. Accessed on 10th of July 2008

  • Moura P, Barata R, Carvalheiro F, Gírio F, Loureiro-Dias M, Paula Esteves M. (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT 40:963–972

    Article  CAS  Google Scholar 

  • Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  CAS  Google Scholar 

  • Nakakuki T (2003) Development of Functional Oligosaccharides in Japan. Trends Glycosci Glycotechnol 15:57–64

    CAS  Google Scholar 

  • Okazaki M, Fujikava S, Matsumoto N (1990a) Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora 9:77–86

    Google Scholar 

  • Okazaki M, Fujikava S, Matsumoto N. (1990b) Effects of Xylooligosaccharides on growth of bifidobacteria. J Jpn Soc Nutr Food Sci 43:395–401 (in Japanese, abstract in English)

    CAS  Google Scholar 

  • Okazaki M, Koda H, Izumi R, Fujikava S, Matsumoto N. (1991) In vitro digestibility and in vivo utilization of xylobiose. J Jpn Soc Nutr Food Sci 44:41–44 (in Japanese, abstract in English)

    CAS  Google Scholar 

  • Palframan R, Gibson GR, Rastall RA (2003) Carbohydrate preferences of befidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 4:71–75

    CAS  Google Scholar 

  • Rycroft C, Jones M, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    Article  CAS  Google Scholar 

  • Santos A, San Mauro M, Diaz DM (2006) Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol 23:498–503

    Article  CAS  Google Scholar 

  • Taniguchi H. (2004) Carbohydrate research and industry in Japan and the Japanese society of applied glycoscience. Starch 56:1–5

    Article  CAS  Google Scholar 

  • Tateyama I, Hashi K, Johno I, Iino T, Hirai, K, Suwa Y, Kiso Y (2005) Effects of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol 51:445–448

    CAS  Google Scholar 

  • Van Laere K, Hartemink R, Bosveld M, Schols HA, Voragen AG (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652

    Article  CAS  Google Scholar 

  • Vázquez M, Alonso J, Dominguez H, Parajó JC (2000) Xylo-oligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393

    Article  Google Scholar 

  • Yamada H, Itoh K, Morishita Y, Taniguchi H (1993) Structure and properties of oligosaccharides from wheat bran. Cereal Foods World 38:490–492

    CAS  Google Scholar 

  • Younes H, Garleb K, Behr S, Remesy C, Demigne C (1995) Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J Nutr 125:1010–1016

    CAS  Google Scholar 

  • Zampa A, Silvi S, Fabiani R, Morozzi G, Orpianesi C, Cresci A(2004) Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Anaerobe 10:19–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Mäkeläinen, H., Juntunen, M., Hasselwander, O. (2009). Prebiotic Potential of Xylo-Oligosaccharides. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_8

Download citation

Publish with us

Policies and ethics