Mechanisms of Prebiotic Impact on Health

  • H. Steed
  • S. Macfarlane


Prebiotics were originally defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activities of one or a limited number of bacteria in the colon, thereby improving host health (Gibson and Roberfroid, 1995). However, a more recent definition is that “A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host wellbeing and health” (Gibson et al., 2004). The principal concept associated with both of these definitions is that the prebiotic has a selective effect on the microbiota that results in an improvement in the health of the host. Common prebiotics in use include inulins, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), soya-oligosaccharides, xylo-oligosaccharides, pyrodextrins, isomalto-oligosaccharides and lactulose. The majority of studies carried out to date have focused on inulin, FOS and GOS (Macfarlane et al., 2008).


Irritable Bowel Syndrome Phytic Acid Prebiotic Action Epithelial Cell Junction Bifidogenic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


antibiotic-associated diarrhea


colorectal cancer


double-blind randomized controlled trial


enzyme linked immuno absorbent assay






glucose tolerance test


inflammatory bowel disease


irritable bowel syndrome


interleukin 10


interferon gamma


mucosa-associated immune system


non-digestable oligosaccharides


necrotising enterocolitis


short chain fatty acid


toll receptor 2


tumor necrosis factor alpha


ulcerative colitis


very low density lipoprotein


  1. Arslanoglu S, Moro G, Schmitt J, Tandoi L, Rizzardi S, Boehm G (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 138(6):1091–1095Google Scholar
  2. Asvarujanon P, Ishizuka S, Hara H (2005) Promotive effects of non-digestible disaccharides on rat mineral absorption depend on the type of saccharide. Nutrition 21:1025–1035CrossRefGoogle Scholar
  3. Azpiroz F (2005) Intestinal perception: mechanisms and assessment. Br J Nutr 93:S7–S12CrossRefGoogle Scholar
  4. Bartosch S, Woodmansey EJ, Paterson JC, McMurdo ME, Macfarlane GT (2005) Microbiological effects of consuming asynbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin Infect Dis 40:28–37CrossRefGoogle Scholar
  5. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Loblet GE, Flint HJ (2006) Two routes of metabolic cross feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the gut. Appl Environ Microbiol 72:3593–3599CrossRefGoogle Scholar
  6. Blottiere HM, Buecher B, Galmcihe JP, Cherbut C (2003) Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 62:101–106CrossRefGoogle Scholar
  7. Bonten MJM, Nathan C, Weisein RA (1997) Recovery of nosocomial faecal flora from frozen stool specimens and rectal swabs. Comparison of preservatives for epidemiological studies. Diagn Microb Infect Dis 27:103–106CrossRefGoogle Scholar
  8. Bovee-Oudenhoven IM, ten Bruggencate SJ, Lettink-Wissink ML, van der Meer R (2003) Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 52:1572–1578CrossRefGoogle Scholar
  9. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang I, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewiski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319CrossRefGoogle Scholar
  10. Buddington RK, Williams CH, Chen S-C, Witherley SA (1996) Dietary supplementation of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr 63:709–716Google Scholar
  11. Cani PD, Joly E, Horsman Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy humans: a pilot study. Eur J Clin Nutr 60:567–572CrossRefGoogle Scholar
  12. Chen H-L, Lu Y-H, Lin J-J, Ko L-Y (2000) Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutr Res 20:1725–1733CrossRefGoogle Scholar
  13. Chen H-L, Lu Y-H, Lin J-J, Ko L-Y (2001) Effects of isomalto-oligosaccharides on bowel functions and indicators of nutritional status in constipated elderly men. J Am Coll Nutr 20:44–49Google Scholar
  14. Coudray C, Bellanger J, Castiglia-Delavaud C, Remsesy C, Vermorel M, Rayssignuier Y (1997) Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr 51:375–380CrossRefGoogle Scholar
  15. Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42(2):91–98CrossRefGoogle Scholar
  16. Cummings JH, Christie S, Cole TJ (2001) A study of fructo-oligosaccharides in the prevention of travellers’ diarrhoea. Aliment Pharmacol Ther 15:1139–1145CrossRefGoogle Scholar
  17. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459Google Scholar
  18. Daubioul CA, Taper HS, de Wispelaere L, Delzenne NM (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J Nutr 130:1314–1319Google Scholar
  19. Delzenne N, Aertssens J, Verplaetse H, Roccaro M, Roberfroid M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci 57:1579–1587CrossRefGoogle Scholar
  20. De Preter V, Raemen H, Cloetens L, Houben E, Rutgeerts P, Verbeke K (2008) Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur J Clin Nutr 62:225–231CrossRefGoogle Scholar
  21. Ducros V, Arnaud J, Tahiri M, Coudray C, Bornet F, Bouteloup-Demange C, Brouns F, Rayssiguier Y, Roussel AM (2005) Influence of short-chain fructo-oligosaccharides (sc-FOS) on absorption of Cu, Zn, and Se in healthy postmenopausal women. J Am Coll Nutr 24:30–37Google Scholar
  22. Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A, Coletta F, Emenhiser C, Kleinman RE (2003) Oligofructose-supplemented infant cereal: 2 randomised, blinded, community-based trials in Peruvian infants. Am J Clin Nutr 77:937–942Google Scholar
  23. Dupuis Y, Digaud A, Fournier P (1978) The relations between intestinal alkaline phosphatase and carbohydrates with regard to calcium absorption. Arch Int Physiol Biochem 86:543–556CrossRefGoogle Scholar
  24. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N(1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30:163–167CrossRefGoogle Scholar
  25. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’Neil DA, Macfarlane GT (2005) Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242–249CrossRefGoogle Scholar
  26. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colony by oligofructose and inulin. Gastroenterology 108:975–982CrossRefGoogle Scholar
  27. Gibson GR, Roberfroid M (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  28. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid M (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275CrossRefGoogle Scholar
  29. Griffin IJ, Davilla PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intake. Br J Nutr 87(S2):S187–S191CrossRefGoogle Scholar
  30. He F, Ouwehand AC, Isolauri E, Hashimoto H, Benno Y, Salminen S (2001) Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol Med Microbiol 30:43–47CrossRefGoogle Scholar
  31. Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, Lien K, Churchill TA, Lupicki M, Dieleman LA (2005) Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 11:977–985CrossRefGoogle Scholar
  32. Ichikawa H, Sakata T (1997) Effect of L-lactic acid, short-chain fatty acids and pH in cecal infusate on morphometric and cell kinetic parameters of the rat caecum. Dig Dis Sci 42:1598–1610CrossRefGoogle Scholar
  33. Jackson KG, Taylor GRL, Clohessy AM, Williams CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 82:23–30Google Scholar
  34. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allerg Clin Immunol 107:129–134CrossRefGoogle Scholar
  35. Kanauchi O, Serizawa I, Araki Y, Suzuki A, Andoh A, Fujiyama Y, Mitsuyama K, Takaki K, Toyonaga A, Sata M, Bamba T (2003) Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol 38(2):200–201CrossRefGoogle Scholar
  36. Kashimura J, Kimura M, Itokawa Y (1996) The effects of isomaltulose, isomalt and isomaltulose-based oligomers on mineral absorption and retention. Biol Trace Elem Res 54:239–250CrossRefGoogle Scholar
  37. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333CrossRefGoogle Scholar
  38. Kok N, Roberfroid M, Delzenne N (1996) Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br J Nutr 76:881–890CrossRefGoogle Scholar
  39. Kok N, Taper H, Delzenne N (1998) Oligofructose modulates lipid metabolism alterations induced by a fat rich diet in rats. J Appl Toxicol 18:47–53CrossRefGoogle Scholar
  40. Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated flora of the large bowel. Gut 53:1610–1616CrossRefGoogle Scholar
  41. Lee DY, Scroeder J 3rd, Gordon DT (1988) Enhancement of Cu bioavailability in the rat by phytic acid. J Nutr 118:712–717Google Scholar
  42. Lewis S, Burmeister S, Brazier J (2005) Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhoea: a randomized, controlled study. Clin Gastroenterol Hepatol 3:442–448CrossRefGoogle Scholar
  43. Lopez HW, Coudray C, Levrat-Verny MA, Feiller-Coudray C, Demigné C, Rémésy C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem 11:500–508CrossRefGoogle Scholar
  44. Luo J, Van Ypersalle M, Rizkalla SW, Rossi F, Bornet FRJ, Slama G (2000) Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J Nutr 130:1572–1577Google Scholar
  45. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344Google Scholar
  46. Macfarlane S, Furrie E, Cummings JH, Macfarlane GT (2004) Chemotaxonomic analysis of bacterial populations colonising the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis 38:1690–1699CrossRefGoogle Scholar
  47. Mineo H, Amano M, Minaminida K, Chiji H, Shigematsu N, Tomita F, Hara H (2006) Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Nutrition 22:312–320CrossRefGoogle Scholar
  48. Mitsuoka T (1992) Intestinal flora and aging. Nutr Rev 50:438–446CrossRefGoogle Scholar
  49. Moreau MC, Gaboriau-Routhiau V (2000) Influence of resident intestinal microflora on the development and functions of the intestinal-associated lymphoid tissue. In: Fuller R, Perdigon G (eds) Probiotics. Kluwer Academic Publishers, Doordrecht, pp 69–114Google Scholar
  50. Moro GE, Arslanoglu S, Stahl B, Jelinek U, Wahn U, Boehm G (2006) A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child 91:814–819CrossRefGoogle Scholar
  51. Nagura T, Hachimura S, Hashiguchi M, Ueda Y, Kanno T, Kikuchi H, Sayama K, Kaminogawa S (2002) Suppressive effect of dietary raffinose on T-helper 2 cell-mediated activity. Br J Nutr 88:421–427CrossRefGoogle Scholar
  52. Nakamura Y, Nosaka M, Suzuki S, Nagafuchi T, Takahashi T, Yajima N, Takenouchi-Ohkubo N, Iwase T, Moro I (2004) Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 137:52–58CrossRefGoogle Scholar
  53. Olguin F, Araya M, Hirsch S, Brunser O, Ayala V, Rivera R, Gotteland M (2005) Prebiotic ingestion does not improve gastrointestinal barrier function in burns patients. Burns 31:484–488CrossRefGoogle Scholar
  54. Poldbeltsev DA, Nikitiuk DB, Pozdniakov AL (2006) Influence of prebiotics on morphological structure of the mucous membrane of intestinum crassum of rats. Vopr Pitan 75:26–29Google Scholar
  55. Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O’Riordan M, O’Sullivan GC, Pool-Zobel B, Rechkemmer G, Roller M, Rowland I, Salvadori M, Thijs H, Van Loo J, Watzl B, Colins JK (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85:488–496Google Scholar
  56. Raschka L, Deniel H (2005) Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37:728–735CrossRefGoogle Scholar
  57. Rodenburg W, Keijer J, Kramer E, Vink C, van der Meer R, Bovee-Oudenhoven IM (2008) Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression. BMC Genomics 9:144CrossRefGoogle Scholar
  58. Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87:S221–S230CrossRefGoogle Scholar
  59. Scholtens PA, Alliet P, Raes M, Alles MS, Kroes H, Boehm G, Knippels LM, Knol J, Vandenplas Y (2008) Fecal secretory immunoglobulin A is increased in healthy infants who receive a formula with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides. J Nutr 138(6):1141–1147Google Scholar
  60. Turnlund JR, King JC, Gong B, Keyes Wr, Michel MC (1985) A stable isotope study of copper absoption in young men: effect of phytate and alpha-cellulose. Am J Clin Nutr 42:18–23Google Scholar
  61. Videla S, Vilaseca J, Antolin M, Garcia-Lafuente A, Guarner F, Crespo E, Casalots J, Salas A, Malagelada JR (2001) Dietary inulin improves distal colitis induced by dextran sodium sulphate in the rat. Am J Gastroenterol 96:1486–1493CrossRefGoogle Scholar
  62. Vigne JL, Lairon D, Borel P, Portugal H, Pauli AM, Hauton JC, Lafont H (1987) Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Br J Nutr 58:405–413CrossRefGoogle Scholar
  63. Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE, Soeters PB, Baeten CG (2002) Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 45:621–627CrossRefGoogle Scholar
  64. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122CrossRefGoogle Scholar
  65. Yoshida T, Hirano A, Wada H, Takahashi K, Hattori M (2004) Alginic acid oligosaccharide suppresses Th2 development and IgE production by inducing IL-12 production. Int Arch Allergy Immunol 133:239–247CrossRefGoogle Scholar
  66. Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME (2004) Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr 134:399–402Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • H. Steed
    • 1
  • S. Macfarlane
    • 1
  1. 1.Microbiology and Gut Biology GroupNinewells Hospital Medical SchoolDundeeUK

Personalised recommendations