Development of Mucosal Vaccines Based on Lactic Acid Bacteria

  • Luis G. Bermúdez-Humarán
  • Silvia Innocentin
  • Francois Lefèvre
  • Jean-Marc Chatel
  • Philippe Langella


Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.


Lactic Acid Bacterium Heterologous Protein Lactic Acid Bacterium Strain Mucosal Vaccine Heterologous Antigen 


  1. Aires KA, Cianciarullo AM, Carneiro SM, Villa LL, Boccardo E, Pérez-Martinez G, Perez-Arellano I, Oliveira ML, Ho PL (2006) Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl Environ Microbiol 72:745–752Google Scholar
  2. Alexandersen S (1996) Advantages and disadvantages of using live vaccines risks and control measures. Acta Vet Scand Suppl 90:89–100Google Scholar
  3. Bermúdez-Humarán LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, Le Loir Y (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68:917–922Google Scholar
  4. Bermúdez-Humarán LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y (2003a) Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71:1887–1896Google Scholar
  5. Bermúdez-Humarán LG, Langella P, Commissaire J, Gilbert S, Le Loir Y, L’Haridon R, Corthier G (2003b) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224:307–313Google Scholar
  6. Bermúdez-Humarán LG, Cortes-Perez NG, Le Loir Y, Gruss A, Rodriguez-Padilla C, Saucedo-Cardenas O, Langella P, Montes de Oca-Luna R (2003c) Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19:1101–1104Google Scholar
  7. Bermúdez-Humarán LG, Corthier G, Langella P (2004a) Recent advances in the use of Lactococcus lactis as live recombinant vector for the development of new safe mucosal vaccines. Recent Res Devel Microbiol 8:147–160Google Scholar
  8. Bermúdez-Humarán LG, Cortes-Perez NG, Le Loir Y, Alcocer-González JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P (2004b) An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53:427–433Google Scholar
  9. Bermúdez-Humarán LG, Cortes-Perez NG, Lefèvre F, Guimarães V, Rabot S, Alcocer-Gonzalez JM, Gratadoux JJ, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, Gruss A, Langella P (2005) A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol 175:7297–7302Google Scholar
  10. Bermúdez-Humarán LG, Nouaille S, Zilberfarb V, Corthier G, Gruss A, Langella P, Issad T (2007) Effects of intranasal administration of a leptin-secreting Lactococcus lactis recombinant on food intake, body weight, and immune response of mice. Appl Environ Microbiol 73:5300–5307Google Scholar
  11. Bermúdez-Humarán LG, Cortes-Perez NG, L’Haridon R, Langella P (2008) Production of biological active murine IFN-gamma by recombinant Lactococcus lactis. FEMS Microbiol Lett 280:144–149Google Scholar
  12. Beukema EL, Brown MP, Hayball JD (2006) The potential role of fowlpox virus in rational vaccine design. Expert Rev Vaccines 5:565–577Google Scholar
  13. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753Google Scholar
  14. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759Google Scholar
  15. Brahmbhatt HN, Lindberg AA, Timmis KN (1992) Shigella lipopolysaccharide: structure, genetics, and vaccine development. Curr Top Microbiol Immunol 180:45–64Google Scholar
  16. Buccato S, Maione D, Rinaudo CD, Volpini G, Taddei AR, Rosini R, Telford JL, Grandi G, Margarit I (2006) Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. J Infect Dis 194(3):331–340Google Scholar
  17. Cesta MF (2006) Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:599–608Google Scholar
  18. Chancey CJ, Khanna KV, Seegers JF, Zhang GW, Hildreth J, Langan A, Markham RB (2006) Lactobacilli-expressed single-chain variable fragment (scFv) specific for intercellular adhesion molecule 1 (ICAM-1) blocks cell-associated HIV-1 transmission across a cervical epithelial monolayer. J Immunol 176:5627–5636Google Scholar
  19. Chang TL, Chang CH, Simpson DA, Xu Q, Martin PK, Lagenaur LA, Schoolnik GK, Ho DD, Hillier SL, Holodniy M, Lewicki JA, Lee PP (2003) Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci USA 100:11672–11677Google Scholar
  20. Charng YC, Lin CC, Hsu CH (2006) Inhibition of allergen-induced airway inflammation and hyperreactivity by recombinant lactic-acid bacteria. Vaccine 24:5931–5936Google Scholar
  21. Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G (2001) Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol 8:545–551Google Scholar
  22. Chatel JM, Pothelune L, Ah-Leung S, Corthier G, Wal JM, Langella P (2008) In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 15:1184–1190Google Scholar
  23. Cheun HI, Kawamoto K, Hiramatsu M, Tamaoki H, Shirahata T, Igimi S, Makino SI (2004) Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol 96:1347–1353Google Scholar
  24. Cho HJ, Shin HJ, Han IK, Jung WW, Kim YB, Sul D, Oh YK (2007) Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine 25:8049–8057Google Scholar
  25. Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM (2007) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6:785–796Google Scholar
  26. Chu H, Kang S, Ha S, Cho K, Park SM, Han KH, Kang SK, Lee H, Han SH, Yun CH, Choi Y (2005) Lactobacillus acidophilus expressing recombinant K99 adhesive fimbriae has an inhibitory effect on adhesion of enterotoxigenic Escherichia coli. Microbiol Immunol 49:941–948Google Scholar
  27. Corr SC, Gahan CC, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12Google Scholar
  28. Cortes-Perez NG, Bermúdez-Humarán LG, Le Loir Y, Rodriguez-Padilla C, Gruss A, Saucedo-Cárdenas O, Langella P, Montes-de-Oca-Luna R (2003) Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol Lett 229:37–42Google Scholar
  29. Cortes-Perez NG, da Costa Medina LF, Lefèvre F, Langella P, Bermúdez-Humarán LG (2008) Production of biologically active CXC chemokines by Lactococcus lactis: evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine 26:5778–5783Google Scholar
  30. Cortes-Perez NG, Lefèvre F, Corthier G, Adel-Patient K, Langella P, Bermúdez-Humarán LG (2007) Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine 25:6581–6588Google Scholar
  31. Corthésy B, Boris S, Isler P, Grangette C, Mercenier A (2005) Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori urease B subunit partially protects against challenge with Helicobacter felis. J Infect Dis 192:1441–1449Google Scholar
  32. Curtiss R III, Kelly SM, Tinge SA, Tacket CO, Levine MM, Srinivasan J, Koopman M (1994) Recombinant Salmonella vectors in vaccine development. Dev Biol Stand 82:23–33Google Scholar
  33. Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110Google Scholar
  34. Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard JC (2003) Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 69:7281–7288Google Scholar
  35. Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P (1995) Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261Google Scholar
  36. Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428Google Scholar
  37. Fouts TR, DeVico AL, Onyabe DY, Shata MT, Bagley KC, Lewis GK, Hone DM (2003) Progress toward the development of a bacterial vaccine vector that induces high-titer long lived broadly neutralizing antibodies against HIV-1. FEMS Immunol Med Microbiol 37:129–134Google Scholar
  38. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141Google Scholar
  39. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9Google Scholar
  40. Grangette C, Müller-Alouf H, Goudercourt D, Geoffroy MC, Turneer M, Mercenier A (2001) Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infect Immun 69:1547–1553Google Scholar
  41. Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16:862–866Google Scholar
  42. Guimarães VD, Gabriel JE, Lefèvre F, Cabanes D, Gruss A, Cossart P, Azevedo V, Langella P (2005) Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect 7:836–844Google Scholar
  43. Guimarães VD, Innocentin S, Lefèvre F, Azevedo V, Wal JM, Langella P, Chatel JM (2006) Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol 72:7091–7097Google Scholar
  44. Hanniffy SB, Carter AT, Hitchin E, Wells JM (2007) Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195:185–193Google Scholar
  45. Hazebrouck S, Oozeer R, Adel-Patient K, Langella P, Rabot S, Wal JM, Corthier G (2006) Constitutive delivery of bovine beta-lactoglobulin to the digestive tracts of gnotobiotic mice by engineered Lactobacillus casei. Appl Environ Microbiol 72:7460–7467Google Scholar
  46. Ho PS, Kwang J, Lee YK (2005) Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine 23:1335–1342Google Scholar
  47. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11:S45–S53Google Scholar
  48. Hu KF, Lövgren-Bengtsson K, Morein B (2001) Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev 51:149–159Google Scholar
  49. Huibregtse IL, Snoeck V, de Creus A, Braat H, De Jong EC, Van Deventer SJ, Rottiers P (2007) Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133:517–528Google Scholar
  50. Illum L, Davis SS (2001) Nasal vaccination: a non-invasive vaccine delivery method that holds great promise for the future. Adv Drug Deliv Rev 51:1–3Google Scholar
  51. Iwaki M, Okahashi N, Takahashi I, Kanamoto T, Sugita-Konishi Y, Aibara K, Koga T (1990) Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene. Infect Immun 58:2929–2934Google Scholar
  52. Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389:521–536Google Scholar
  53. Jensen ER, Shen H, Wettstein FO, Ahmed R, Miller JF (1997) Recombinant Listeria monocytogenes as a live vaccine vehicle and a probe for studying cell-mediated immunity. Immunol Rev 158:147–157Google Scholar
  54. Kajikawa A, Satoh E, Leer RJ, Yamamoto S, Igimi S (2007) Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine 25:3599–3605Google Scholar
  55. Karkhanis LU, Ross TM (2007) Mucosal vaccine vectors: replication-competent versus replication-deficient poxviruses. Curr Pharm Des 13:2015–2023Google Scholar
  56. Killeen K, Spriggs D, Mekalanos J (1999) Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr Top Microbiol Immunol 236:237–254Google Scholar
  57. Kim SJ, Jun DY, Yang CH, Kim YH (2006) Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice. Appl Microbiol Biotechnol 72:462–470Google Scholar
  58. Kok J, van der Vossen JM, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48:726–731Google Scholar
  59. Krüger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, van Dollenweerd C, Ma JK, Hammarström L (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20:702–706Google Scholar
  60. Lee JS, Poo H, Han DP, Hong SP, Kim K, Cho MW, Kim E, Sung MH, Kim CJ (2006) Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 80:4079–4087Google Scholar
  61. Lee MH, Roussel Y, Wilks M, Tabaqchali S (2001) Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine 19:3927–3935Google Scholar
  62. Lee P, Faubert GM (2006) Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. Microbiology 152:1981–1990Google Scholar
  63. Lee SF (2003) Oral colonization and immune responses to Streptococcus gordonii: Potential use as a vector to induce antibodies against respiratory pathogens. Curr Opin Infect Dis 16:231–235Google Scholar
  64. Li YG, Tian FL, Gao FS, Tang XS, Xia C (2007) Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus. Vaccine 25:902–911Google Scholar
  65. Liu X, Lagenaur LA, Simpson DA, Essenmacher KP, Frazier-Parker CL, Liu Y, Tsai D, Rao SS, Hamer DH, Parks TP, Lee PP, Xu Q (2006) Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob Agents Chemother 50:3250–3259Google Scholar
  66. Maassen CB, Laman JD, den Bak-Glashouwer MJ, Tielen FJ, van Holten-Neelen JC, Hoogteijling L, Antonissen C, Leer RJ, Pouwels PH, Boersma WJ, Shaw DM (1999) Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17:2117–2128Google Scholar
  67. Mannam P, Jones KF, Geller BL (2004) Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 72:3444–3450Google Scholar
  68. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932Google Scholar
  69. Mielcarek N, Alonso S, Locht C (2001) Nasal vaccination using live bacterial vectors. Adv Drug Deliv Rev 51:55–69Google Scholar
  70. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717Google Scholar
  71. Miyoshi A, Bermúdez-Humarán LG, Ribeiro LA, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2006) Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact 23:5:14Google Scholar
  72. Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58Google Scholar
  73. Moss B (1991) Vaccinia virus: a tool for research and vaccine development. Science 252:1662–1667Google Scholar
  74. Nijland R, Lindner C, van Hartskamp M, Hamoen LW, Kuipers OP (2007) Heterologous production and secretion of Clostridium perfringens beta-toxoid in closely related Gram-positive hosts. J Biotechnol 127:361–372Google Scholar
  75. Norton PM, Wells JM, Brown HW, Macpherson AM, Le Page RW (1997) Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15:616–619Google Scholar
  76. Oliveira ML, Arêas AP, Campos IB, Monedero V, Perez-Martínez G, Miyaji EN, Leite LC, Aires KA, Lee Ho P (2006) Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect 8:1016–1024Google Scholar
  77. Patterson LJ, Robert-Guroff M (2008) Replicating adenovirus vector prime/protein boost strategies for HIV vaccine development. Expert Opin Biol Ther 8:1347–1363Google Scholar
  78. Perez CA, Eichwald C, Burrone O, Mendoza D (2005) Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol 99(5):1158–1164Google Scholar
  79. Poo H, Pyo HM, Lee TY, Yoon SW, Lee JS, Kim CJ, Sung MH, Lee SH (2006) Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer 119:1702–1709Google Scholar
  80. Pouwels PH, Leer RJ, Boersma WJ (1996) The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol 44(1–3):183–192Google Scholar
  81. Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K (2006) Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 24:3900–3908Google Scholar
  82. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916Google Scholar
  83. del Rio B, Dattwyler RJ, Aroso M, Neves V, Meirelles L, Seegers JF, Gomes-Solecki M (2008) Oral immunization with recombinant Lactobacillus plantarum induces a protective immune response in mice with Lyme disease. Clin Vaccine Immunol 15:1429–1435Google Scholar
  84. Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15:653–657Google Scholar
  85. Rupa P, Monedero V, Wilkie BN (2008) Expression of bioactive porcine interferon-gamma by recombinant Lactococcus lactis. Vet Microbiol 129:197–202Google Scholar
  86. Rush CM, Hafner LM, Timms P (1995) Lactobacilli: vehicles for antigen delivery to the female urogenital tract. Adv Exp Med Biol 371B:1547–1552Google Scholar
  87. Seegers JF (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20:508–515Google Scholar
  88. Sim AC, Lin W, Tan GK, Sim MS, Chow VT, Alonso S (2008) Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine 26:1145–1154Google Scholar
  89. Singh M, Chakrapani A, O’Hagan D, Wendorf J, Chesko J, Kazzaz J, Ugozzoli M, Vajdy M, O’Hagan D, Singh M (2008) A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin 4:44–49Google Scholar
  90. Ståhl S, Samuelson P, Hansson M, Andréoni C, Goetsch L, Libon C, Liljeqvist S, Gunneriusson E, Binz H, Nguyen TN, Uhlén M (1997) Development of non-pathogenic staphylococci as vaccine delivery vehicles. In: Wells J, Pozzi G (eds) Recombinant gram-positive bacteria as vaccine vehicles for mucosal immunization. R. G. Landes Biomedical Publishers, Springer, New York, pp 61–81Google Scholar
  91. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355Google Scholar
  92. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789Google Scholar
  93. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66:3183–3189Google Scholar
  94. Steidler L, Wells JM, Raeymaekers A, Vandekerckhove J, Fiers W, Remaut E (1995) Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl Environ Microbiol 61:1627–1629Google Scholar
  95. Stevenson A, Roberts M (2003) Use of Bordetella bronchiseptica and Bordetella pertussis as live vaccines and vectors for heterologous antigens. FEMS Immunol Med Microbiol 37:121–128Google Scholar
  96. Stover CK, de la Cruz VF, Bansal GP, Hanson MS, Fuerst TR, Jacobs WR Jr, Bloom BR (1992) Use of recombinant BCG as a vaccine delivery vehicle. Adv Exp Med Biol 327:175–182Google Scholar
  97. Ulaeto D, Hruby DE (1994) Uses of vaccinia virus in vaccine delivery. Curr Opin Biotechnol 5:501–504Google Scholar
  98. van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240:428–434Google Scholar
  99. Wang K, Huang L, Kong J, Zhang X (2008) Expression of the capsid protein of porcine circovirus type 2 in Lactococcus lactis for oral vaccination. J Virol Methods 150:1–6Google Scholar
  100. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362Google Scholar
  101. Wells JM, Norton PM, Le Page RW (1995) Progress in the development of mucosal vaccines based on Lactococcus lactis. Int Dairy J 5:1071–1079Google Scholar
  102. Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8:1155–1162Google Scholar
  103. Xin KQ, Hoshino Y, Toda Y, Igimi S, Kojima Y, Jounai N, Ohba K, Kushiro A, Kiwaki M, Hamajima K, Klinman D, Okuda K (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102:223–228Google Scholar
  104. Xu Y, Li Y (2007) Induction of immune responses in mice after intragastric administration of Lactobacillus casei producing porcine parvovirus VP2 protein. Appl Environ Microbiol 73:7041–7047Google Scholar
  105. Zegers ND, Kluter E, van Der Stap H, van Dura E, van Dalen P, Shaw M, Baillie L (1999) Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. J Appl Microbiol 87:309–314Google Scholar
  106. Zhang ZH, Jiang PH, Li NJ, Shi M, Huang W (2005) Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-1(19). World J Gastroenterol 11:6975–6980Google Scholar
  107. Zhuang Z, Wu ZG, Chen M, Wang PG (2008) Secretion of human interferon-beta 1b by recombinant Lactococcus lactis. Biotechnol Lett 30:1819–1823Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Luis G. Bermúdez-Humarán
    • 1
  • Silvia Innocentin
    • 1
    • 2
  • Francois Lefèvre
    • 2
  • Jean-Marc Chatel
    • 1
  • Philippe Langella
    • 1
  1. 1.INRA 0910Unité d’Ecologie et de Physiologie du Système DigestifJouy-en-JosasFrance
  2. 2.INRA, UR892Unité de Virologie et Immunologie MoléculairesJouy-en-JosasFrance

Personalised recommendations