Molecular Tools for Investigating the Gut Microbiota

  • Christophe Lay
Reference work entry


The “microbial world within us” (Zoetendal et al., 2006) is populated by a complex society of indigenous microorganisms that feature different “ethnic” populations. Those microbial cells thriving within us are estimated to outnumber human body cells by a factor of ten to one. Insights into the relation between the intestinal microbial community and its host have been gained through gnotobiology. Indeed, the influence of the gut microbiota upon human development, physiology, immunity, and nutrition has been inferred by comparing gnotoxenic and axenic murine models (Hooper et al., 1998, 2002, 2003; Hooper and Gordon, 2001).


Bacterial Community Clone Library Terminal Restriction Fragment Length Polymorphism Fecal Microbiota Metagenomic Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


bacterial artificial chromosome


basal diet


cycle threshold


denaturing gradient gel electrophoresis


Fluorescence in situ hybridization


FISH combined with flow cytometry


FISH-Fluorescence activated cell sorting


human microbiome project


multiple displacement amplification


minor groove binders


National Institutes of Health


operational taxonomic units


pulsed-field gel electrophoresis


quantitative real-time PCR


ribosomal database project


restriction fragment length polymorphism


short-chain fructo-oligosaccharide


temporal gradient gel electrophoresis


terminal restriction fragment length polymorphism


terminal restriction fragments


temporal temperature gradient gel electrophoresis


  1. Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216Google Scholar
  2. Apajalahti JH, Kettunen A, Nurminen PH, Jatila H, Holben WE (2003) Selective plating underestimates abundance and shows differential recovery of bifidobacterial species from human feces. Appl Environ Microbiol 69:5731–5735Google Scholar
  3. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187Google Scholar
  4. Balagadde FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140Google Scholar
  5. Bartosch S, Fite A, Macfarlane GT, Mcmurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581Google Scholar
  6. Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373Google Scholar
  7. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223Google Scholar
  8. De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592Google Scholar
  9. Dicksved J, Floistrup H, Bergstrom A, Rosenquist M, Pershagen G, Scheynius A, Roos S, Alm JS, Engstrand L, Braun-Fahrlander C, Von Mutius E, Jansson JK (2007) Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 73:2284–2289Google Scholar
  10. Dinoto A, Suksomcheep A, Ishizuka S, Kimura H, Hanada S, Kamagata Y, Asano K, Tomita F, Yokota A (2006) Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl Environ Microbiol 72:784–792Google Scholar
  11. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638Google Scholar
  12. Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards CA, Corthier G, Dore J (2006) Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rrna targeted probes. J Microbiol Methods 67:150–161Google Scholar
  13. Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226Google Scholar
  14. Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York.Google Scholar
  15. Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D (2008) Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 4(2):e1000011Google Scholar
  16. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rrna-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345Google Scholar
  17. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810Google Scholar
  18. Fuchs BM, Glockner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rrna of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607Google Scholar
  19. Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rrna for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982Google Scholar
  20. Garrido D, Suau A, Pochart P, Cruchet S, Gotteland M (2005) Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiol Lett 248:249–256Google Scholar
  21. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359Google Scholar
  22. Gloux K, Leclerc M, Iliozer H, L’haridon R, Manichanh C, Corthier G, Nalin R, Blottiere HM, Dore J (2007) Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 73:3734–3737Google Scholar
  23. Gueimonde M, Tolkko S, Korpimaki T, Salminen S (2004) New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl Environ Microbiol 70:4165–4169Google Scholar
  24. Haarman M, Knol J (2005) Quantitative real-time PCR assays to identify and quantify fecal bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71:2318–2324Google Scholar
  25. Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11:3–12Google Scholar
  26. Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW (2002) Extensive set of 16S rrna-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990Google Scholar
  27. Harmsen HJM, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rrna-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527Google Scholar
  28. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rdna clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548Google Scholar
  29. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, De Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123Google Scholar
  30. Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20:336–343Google Scholar
  31. Hooper LV Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118Google Scholar
  32. Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307Google Scholar
  33. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273Google Scholar
  34. Huijsdens XW, Linskens RK, Mak M, Meuwissen SG, Vandenbroucke-Grauls CM, Savelkoul PH (2002) Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. J Clin Microbiol 40:4423–4427Google Scholar
  35. Jansen GJ, Wildeboer-Veloo AC, Tonk RH, Franks AH, Welling GW (1999) Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 37:215–221Google Scholar
  36. Jernberg C, Sullivan A, Edlund C, Jansson JK (2005) Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl Environ Microbiol 71:501–506Google Scholar
  37. Kimura K, Mccartney AL, Mcconnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63:3394–3398Google Scholar
  38. Klaassens ES, De Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392Google Scholar
  39. Kumar Y, Westram R, Behrens S, Fuchs B, Glockner FO, Amann R, Meier H, Ludwig W (2005) Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics 6:61Google Scholar
  40. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181Google Scholar
  41. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rrna-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075Google Scholar
  42. Lay C (2004) Caractérisation moléculaire à haut débit de la diversité phylogénétique de la microflore digestive humaine. Ph.D. Thesis. Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, FranceGoogle Scholar
  43. Lay C, Dore J, Rigottier-Gois L (2007) Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescence-activated cell sorting or group-specific PCR using 16S rrna gene oligonucleotides. FEMS Microbiol Ecol 60:513–520Google Scholar
  44. Lay C, Rigottier-Gois L, Holmstrom K, Rajilic M, Vaughan EE, De Vos WM, Collins MD, Thiel R, Namsolleck P, Blaut M, Dore J (2005a) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71:4153–4155Google Scholar
  45. Lay C, Sutren M, Rochet V, Saunier K, Dore J, Rigottier-Gois L (2005b) Design and validation of 16S rrna probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7:933–946Google Scholar
  46. Lepage P, Colombet J, Marteau P, Sime-Ngando T, Dore J, Leclerc M (2008) Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57:424–425Google Scholar
  47. Lepage P, Seksik P, Sutren M, De La Cochetiere MF, Jian R, Marteau P, Dore J (2005) Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11:473–480Google Scholar
  48. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075Google Scholar
  49. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023Google Scholar
  50. Mah KW, Chin VI, Wong WS, Lay C, Tannock GW, Shek LP, Aw MM, Chua KY, Wong HB, Panchalingham A, Lee BW (2007) Effect of a milk formula containing probiotics on the fecal microbiota of asian infants at risk of atopic diseases. Pediatr Res 62:674–679Google Scholar
  51. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211Google Scholar
  52. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:11889–11894Google Scholar
  53. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, Mcdade KE, Mckenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380Google Scholar
  54. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682Google Scholar
  55. Martin R, Heilig GH, Zoetendal EG, Smidt H, Rodriguez JM (2007) Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 103:2638–2644Google Scholar
  56. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rrna-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173Google Scholar
  57. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rrna-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451Google Scholar
  58. Mccartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62:4608–4613Google Scholar
  59. Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Environ Microbiol 27:961–979Google Scholar
  60. Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207Google Scholar
  61. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Dore J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033Google Scholar
  62. Mullard A (2008) Microbiology: the inside story. Nature 453:578–580Google Scholar
  63. Nakanishi Y, Murashima K, Ohara H, Suzuki T, Hayashi H, Sakamoto M, Fukasawa T, Kubota H, Hosono A, Kono T, Kaminogawa S, Benno Y (2006) Increase in terminal restriction fragments of Bacteroidetes-derived 16S rrna genes after administration of short-chain fructooligosaccharides. Appl Environ Microbiol 72:6271–6276Google Scholar
  64. Nielsen DS, Moller PL, Rosenfeldt V, Paerregaard A, Michaelsen KF, Jakobsen M (2003) Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 69:7545–7548Google Scholar
  65. Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 42:2566–2572Google Scholar
  66. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467Google Scholar
  67. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the Human Infant Intestinal Microbiota. PLoS Biol 5(7):e177, 1556–1573Google Scholar
  68. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, Van Den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521Google Scholar
  69. Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119:e724–e732Google Scholar
  70. Podar M, Abulencia CB, Walcher M, Hutchison D, Zengler K, Garcia JA, Holland T, Cotton D, Hauser L, Keller M (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73:3205–3214Google Scholar
  71. Poretsky RS, Bano N, Buchan A, Lecleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126Google Scholar
  72. Requena T, Burton J, Matsuki T, Munro K, Simon MA, Tanaka R, Watanabe K, Tannock GW (2002) Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol 68:2420–2427Google Scholar
  73. Rigottier-Gois L, Le Bourhis A-G, Gramet G, Rochet V, Dore J (2003a) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rrna probes. FEMS Microbiol Ecol 43:237–245Google Scholar
  74. Rigottier-Gois L, Rochet V, Garrec N, Suau A, Dore J (2003b) Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rrna probes. Syst Appl Microbiol 26:110–118Google Scholar
  75. Rinne M, Kalliomaki M, Salminen S, Isolauri E (2006) Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J Pediatr Gastroenterol Nutr 43:200–205Google Scholar
  76. Rochet V, Rigottier-Gois L, Sutren M, Krementscki MN, Andrieux C, Furet JP, Tailliez P, Levenez F, Mogenet A, Bresson JL, Meance S, Cayuela C, Leplingard A, Dore J (2006) Effects of orally administered Lactobacillus casei DN-114 001 on the composition or activities of the dominant faecal microbiota in healthy humans. Br J Nutr 95:421–429Google Scholar
  77. Sakamoto M, Hayashi H, Benno Y (2003) Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol 47:133–142Google Scholar
  78. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, De Vos WM (2001a) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513Google Scholar
  79. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, De Vos WM (2001b) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231Google Scholar
  80. Satokari RM, Vaughan EE, Favier CF, Doré J, Edwards C, De Vos WM (2002) Diversity of bifidobacterium and lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rdna sequence differences. Microb Ecol Health Dis 14:97–105Google Scholar
  81. Saunier K, Rouge C, Lay C, Rigottier-Gois L, Dore J (2005) Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep 1156 16S rrna probe in combination with helper and competitor oligonucleotides. Syst Appl Microbiol 28:454–464Google Scholar
  82. Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, Jian R, Dore J (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52:237–242Google Scholar
  83. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rrna sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  84. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346Google Scholar
  85. Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104:9052–9057Google Scholar
  86. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rrna from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807Google Scholar
  87. Suau A, Rochet V, Sghir A, Gramet G, Brewaeys S, Sutren M, Rigottier-Gois L, Dore J (2001) Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 24:139–145Google Scholar
  88. Tannock GW, Munro K, Bibiloni R, Simon MA, Hargreaves P, Gopal P, Harmsen H, Welling G (2004) Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70:2129–2136Google Scholar
  89. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588Google Scholar
  90. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223Google Scholar
  91. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810Google Scholar
  92. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031Google Scholar
  93. Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3(6):e2527Google Scholar
  94. Vanhoutte T, Huys G, De Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rrna gene primers. FEMS Microbiol Ecol 48:437–446Google Scholar
  95. Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rrna analysis. FEMS Microbiol Rev 21:213–229Google Scholar
  96. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585Google Scholar
  97. Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol 71:2347–2354Google Scholar
  98. Wang RF, Beggs ML, Erickson BD, Cerniglia CE (2004) DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes 18:223–234Google Scholar
  99. Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, Martricardi PM, Aberg N, Perkin MR, Tripodi S, Coates AR, Hesselmar B, Saalman R, Molin G, Ahrne S (2008) Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 121:129–134Google Scholar
  100. Wang RF, Kim SJ, Robertson LH, Cerniglia CE (2002) Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol Cell Probes 16:341–350Google Scholar
  101. Welling GW, Elfferich P, Raangs GC, Wildeboer-Veloo AC, Jansen GJ, Degener JE (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scand J Gastroenterol Suppl 222:17–19Google Scholar
  102. Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278Google Scholar
  103. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rrna from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859Google Scholar
  104. Zoetendal EG, Akkermans ADL, Akkermans-Van Vliet WM, De Visser JAGM, De Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134Google Scholar
  105. Zoetendal EG, Ben-Amor K, Harmsen HJ, Schut F, Akkermans AD, De Vos WM (2002a) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rrna-targeted probes. Appl Environ Microbiol 68:4225–4232Google Scholar
  106. Zoetendal EG, Vaughan EE, De Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650Google Scholar
  107. Zoetendal EG, Von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, De Vos WM (2002b) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christophe Lay
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations