Skip to main content

Some Technological Challenges in the Addition of Probiotic Bacteria to Foods

  • Reference work entry
Prebiotics and Probiotics Science and Technology

Abstract

In North-America, up to 93% of consumers believe certain foods have health benefits that may reduce the risk of disease (Clydesdale, 2005). Using a strict definition, limited to food and drinks that tend to make specific health claims of some kind on the packaging or in advertising, the functional foods (FF) and drinks market in the five major European markets, the USA, Japan and Australia had a combined value of 16 billion USD in 2005 (Leatherhead Food International, 2006). Dairy products account for nearly 43% of this market, which is almost entirely made up of fermented dairy products (Leatherhead Food International, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a w :

water activity

B. :

Bifidobacterium

CFU :

colony-forming units

DVI :

Direct Vat Inoculation

FF :

Functional Food

FOS :

fructo-oligosaccharides

HPD :

high probiotic density

L. :

Lactobacillus

ME :

microentrapped

NFMS :

Non-fat milk solids

S. :

Streptococcus

UK :

United Kingdom

USA :

United States of America

USD :

United Stated Dollars

References

  • Abd El-Gawad IA, El-Sayed EM, Hafez SA, El-Zeini HM, Saleh FA (2005) The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet. Int Dairy J 15:37–44

    CAS  Google Scholar 

  • Abu-Taraboush HM, Al-Dagal MM, Al-Royli MA (1998) Growth, Viability, and Proteolytic Activity of Bifidobacteria in Whole Camel Milk. J Dairy Sci 81:354–361

    CAS  Google Scholar 

  • Akalin AS, Erisir D (2008) Effects of Inulin and Oligofructose on the Rheological Characteristics and Probiotic Culture Survival in Low-Fat Probiotic Ice Cream. J Food Sci 73:M184–M188

    CAS  Google Scholar 

  • Akin MS (2005) Effects of inulin and different sugar levels on viability of priobiotic bacteria and the physical and sensory characteristics of probiotic fermented ice-cream. Milchwissenschaft 60:297–299

    CAS  Google Scholar 

  • Alamprese C, Foschino R, Rossi M, Pompei C, Savani L (2002) Int Diary J 12:201–208.

    CAS  Google Scholar 

  • Alamprese C, Foschino R, Rossi M, Pompei C, Corti S (2005) Effects of Lactobacillus rhamnosus GG addition in ice cream. Int J Dairy Technol 58:200–206

    Google Scholar 

  • Al-Dabbagh WY, Allan MC (1989) Influence of Concentration of Non-Fat Dried Milk Solids (NFDM) on Growth and Acid Production of Lactobacillus bulgaricus and Streptococcus thermophilus. Asian J Dairy Res 8:115–121

    Google Scholar 

  • Alvarez F, Arguello M, Cabero M, Riera FA, Alvarez R, Iglesias JR, Granda J (1998) Fermentation of concentrated skim-milk. Effects of different protein/lactose ratios obtained by ultrafiltrationdiafiltration. J Sci Food Agric 76:10–16

    CAS  Google Scholar 

  • Angeles AG, Marth EH (1971) Growth and activity of lactic-acid bacteria in soy milk. 1. Growth and acid production. J Milk Food Technol 34:30–36

    CAS  Google Scholar 

  • Anonymous (2007) www.nutraingredients-usa.com/news/PrintNewsBis.asp?id = 74062 February 2, 2007

  • Antonsson M, Ardö Y, Nilsson BF, Molin G (2002) Screening and selection of Lactobacillus strains for use as adjunct cultures in production of semi-hard cheese. J Dairy Res 69:457–472February 2, 2007

    CAS  Google Scholar 

  • Aryana KJ, Plauche S, Rao RM, McGrew P, Shah NP (2007) Fat-free plain yogurt manufactured with inulins of various chain lengths and Lactobacillus acidophilus. J Food Sci 72:M79–M84

    CAS  Google Scholar 

  • Babu V, Mital BK, Garg SK (1992) Effect of tomato juice addition on the growth and activity of Lactobacillus acidophilus. Int J Food Microbiol 17:67–70

    CAS  Google Scholar 

  • Beal C, Corrieu G (1991) Influence of pH, temperature, and inoculum composition on mixed cultures of Streptococcus thermophilus 404 and Lactobacillus bulgaricus 398. Biotechnol Bioeng 38:90–98

    CAS  Google Scholar 

  • Belvis J, Tompkins TA, Wallace TA, Casavant L, Fortin C, Caron C (2006) Statrility of probiotic bacteria in foodstuffs. Proceedings, CIFST Meeting, Montréal postu, May 30th

    Google Scholar 

  • Blagden TD, Gilliland SE (2005) Reduction of Levels of Volatile Components Associated with the “Beany” Flavor in Soymilk by Lactobacilli and Streptococci. J Food Sci 70:M186–M189

    CAS  Google Scholar 

  • Bolduc MP, Raymond Y, Fustier P, Champagne CP, Vuillemard JC (2006) Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. Int Dairy J 16:1038–1048

    CAS  Google Scholar 

  • Bozanic R, Brletic S, Lovkovic S (2008) Mljekarstvo 58:61–68

    CAS  Google Scholar 

  • Brashears MM, Gilliland SE (1995) Survival during frozen and subsequent refrigerated storage of Lactobacillus acidophilus cells as influenced by the growth phase. J Dairy Sci 78:2326–2335

    CAS  Google Scholar 

  • Bruno FA, Lankaputhra WEV, Shah NP (2002) Growth, viability and activity of Bifidobacterium spp. in skim milk containing prebiotics. J Food Sci 67:2740–2744

    CAS  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    CAS  Google Scholar 

  • Champagne CP (2009) Recent advances in probiotics and prebiotics in foods: product applications, and wellbeing. Aryana K (ed) DEStech Publications, Lancaster, PA, in press

    Google Scholar 

  • Champagne CP, Gardner N, Roy D (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45:61–84

    CAS  Google Scholar 

  • Champagne CP, Gardner NJ (2008) Effect of storage in a fruit drink on subsequent survival of probiotic lactobacilli to gastro-intestinal stresses. Food Res Int 539–543

    Google Scholar 

  • Champagne CP, Green-Johnson J, Raymond Y, Barrette J, Buckley N (2009) Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Res Int, DOI 10.1016/j.foodres.2008.12.018

    Google Scholar 

  • Champagne CP, Kailasapathy K (2008) Controlled release technologies for targeted nutrition. Garti N (ed), Woodhead Publishing, CRC Press, Cambridge, UK pp. 344–369

    Google Scholar 

  • Champagne CP, Møllgaard H (2008) Handbook of fermented functional foods, 2nd edn. CRC Press (Taylor & Francis), Boca Raton, pp. 513–532

    Google Scholar 

  • Champagne CP, Mondou F, Raymond Y, Roy D (1996) Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res Int 29:555–562

    CAS  Google Scholar 

  • Champagne CP, Raymond Y, Gagnon R (2008) Viability of Lactobacillus rhamnosus R0011 in an apple-based fruit juice under simulated storage conditions at the consumer level. J Food Sci 73(5):M221–M226

    CAS  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 79: 131–141

    CAS  Google Scholar 

  • Chen MJ, Chen KN, Kuo YT (2007) Optimal thermotolerance of Bifidobacterium bifidum in gellan-alginate microparticles. Biotechnol Bioeng 98:411–419

    CAS  Google Scholar 

  • Chien HL, Huang HY, Chou CC (2006) Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol 23:772–778

    CAS  Google Scholar 

  • Christopher MD, Padmanabha-Reddy V, Venkateswarlu K (2006) J Food Sci Technol 43:552–554

    Google Scholar 

  • Clydesdale F (2005) Food Technol 58:35. Full report at: http://members.ift.org/IFT/Research/IFTExpertReports/functionalfoods_report.htm

  • Crowley L (2008) www.nutraingredients-usa.com/news/PrintNewsBis.asp?id=86541 July 17, 2008

  • Dave RI, Shah NP (1996) Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. J Dairy Sci 79:1529–1536July 17, 2008

    CAS  Google Scholar 

  • Dave RI, Shah NP (1997) Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int Dairy J 7:435–443

    CAS  Google Scholar 

  • De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70:1336–1346

    CAS  Google Scholar 

  • Desjardins ML, Roy D (1991) B-Galactosidase and proteolytic activities of bifidobacteria in milk: a preliminary study. Milchwissenschaft 46:11–13

    CAS  Google Scholar 

  • De Valdez GF, De Giori GS, De Ruiz Holgado AP, Oliver G (1985a) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341

    CAS  Google Scholar 

  • De Valdez GF, De Giori GS, De Ruiz Holgado AP, Oliver G (1985b) Rehydration conditions and viability of freeze-dried lactic acid bacteria. Cryobiology 22:574–577

    Google Scholar 

  • Ding WK, Shah NP (2007) Acid, Bile and Heat Tolerance of Microencapsulated Probiotic Bacteria. J Food Sci 72:M446–M450

    CAS  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15: 973–988

    CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chem 104: 10–20

    CAS  Google Scholar 

  • Elli M, Zink R, Reniero R, Morelli L (1999) Growth requirements of Lactobacillus johnsonii in skim and UHT milk. Int Dairy J 9:507–513

    Google Scholar 

  • Farnworth ER (2004) The beneficial health effects of fermented foods – potential probiotics around the world. J Nutraceuticals Funct Med Foods 4:93–117

    Google Scholar 

  • Farnworth ER, Champagne CP, Van Calsteren MR (2007) Handbook of nutraceuticals and functional foods, 2nd edn. CRC Press, Boca Raton, pp. 353–371

    Google Scholar 

  • Fernandez-Murga ML, Font-de-Valdez G, Anibal-Disalvo E (2001) Arch Biochem Biophys 388:179–184

    CAS  Google Scholar 

  • Fletcher A (2006) www.foodnavigator.com/news/ng.asp?n = 65680 August 2, 2006

  • Gardini F, Lanciotti R, Guerzoni ME, Torriani S (1999) Evaluation of aroma production and survival of Streptococcus thermophilus, Lactobacillus delbruekii subsp bulgaricus and Lactobacillus acidophilus in fermented milks. Int Dairy J 9:125–134August 2, 2006

    Google Scholar 

  • Gardner NJ, Savard T, Obermeier P, Caldwell G, Champagne CP (2001) Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol 64:261–275

    CAS  Google Scholar 

  • Garro MS, De Valdez GF, De Giori GS (2001) Application of conductimetry for evaluation of lactic starter cultures in soymilk. J Food Sci 67:1175–1178

    Google Scholar 

  • Gaudreau H, Champagne CP, Jelen P (2005) The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk. Enz Microb Technol 36:83–90

    CAS  Google Scholar 

  • Gélinas P, Champagne CP, Farnworth E (2009) Starter cultures for cereal foods. In: Encyclopaedia of biotechnology in agriculture and food. Heldman DR, Bridges A, Hoover D, Wheeler MB (eds) Taylor & Francis Books, London UK, in press

    Google Scholar 

  • Gerez CL, Cuezzo S, Rollan G, Font de Valdez G (2008) Food Microbiol 25:253–259

    CAS  Google Scholar 

  • Gobbetti M, Corsetti A, Smacchi E, Zocchetti A, De Angelis M (1998) Production of Crescenza Cheese by Incorporation of Bifidobacteria. J Dairy Sci 81:37–47

    CAS  Google Scholar 

  • Godward G, Kailasapathy K (2003) Viability and survival of free and encapsulated probiotic bacteria in Cheddar cheese. Milchwissenschaft 58:624–627

    Google Scholar 

  • Goh JS, Chae YS, Gang CG, Kwon IK, Choi M, Lee SK, Park H (1993) Studies on the development of ginseng-yogurt and its health effect. I. Effect of ginseng extracts on the acid production by lactic acid bacteria and the distribution intestinal microflora of mouse. Kor J Dairy Sci 15:216–225

    Google Scholar 

  • Gomes AMP, Malcata FX (1998) Develpoment of probiotic cheese manufactured from goat milk: response surface analysis via technological manipulation. J Dairy Sci 81:1492–1507

    CAS  Google Scholar 

  • Gopal K, Ruohang W, Hemant P, Pandiella SS (2007) Process Biochem 42:65–70

    Google Scholar 

  • Gopal K, Vazquez JA, Pandiella SS (2008) Enz Microb Technol 43:355–361

    Google Scholar 

  • Goulet J, Wozniak J (2002) Probiotic stability: a multi-faced reality. Innov Food Technol 14–16

    Google Scholar 

  • Halliday J (2007) www.foodnavigator.com/news/PrintNewsBis.asp?n = 79486 September 13, 2007

  • Haynes IN, Playne MJ (2002) Survival of probiotic culture in low fat ice-cream. Austral J Dairy Technol 57:10–14September 13, 2007

    Google Scholar 

  • Heap HA, Richardson GH (1985) The proteolytic effect of fast-coagulating and slow-coagulating strain of Streptococcus cremoris. N Z J Dairy Sci Technol 20:155–161

    CAS  Google Scholar 

  • Heller L (2008)www.nutraingredients-usa.com/news/PrintNewsBis.asp?id=86468 July 14, 2008

  • Hull RR, Roberts AV, Mayes JJ (1984) Survival of Lactobacillus acidophilus in yogurt. Austral J Dairy Technol 39:164–166July 14, 2008

    Google Scholar 

  • Ishibashi N, Shimamura S (1993) Food Technol 47:126, 129–134

    Google Scholar 

  • Ishibashi N, Tatematsu T, Shimamura S, Tomota M, Okonogi S (1985) Fundamentals and application of freeze drying to biological materials, dyes and foodstuffs. International Institute of Refrigeration, Paris, pp. 227–232

    Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in mil. Appl Environ Microbiol 61:3024–3030

    CAS  Google Scholar 

  • Juillard V, Spinnler HE, Desmazeaud M, Boquien J (1987) Phenomenes de cooperation et d'inhibition entre les bacteries lactiques utilisées en industrie laitière. Le Lait 67(2):149–172

    Google Scholar 

  • Kailasapathy K, Harmstorf I, Phillips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT-Food Sci Technol 41:1317–1322

    CAS  Google Scholar 

  • Kailasapathy K, Rybka S (1997) Lactobacillus acidophilus and Bifidobacterium spp. their therapeutic potential and survival in yoghurt. Austral J Dairy Technol 52:28–35

    Google Scholar 

  • Kamaly KM (1997) Food Res Int 30:675–682

    CAS  Google Scholar 

  • Kebary KMK, Hussein SA, Badawi RM (1998) Improving viability of bifidobacterium and their effect on frozen ice milk. Egypt J Dairy Sci 26:319–337

    Google Scholar 

  • Khalil AH, Mansour EH (1998) Alginate encapsulation bifidobacteria survival in mayonnaise. J Food Sci 63:702–705

    CAS  Google Scholar 

  • Kheadr E, Bernoussi N, Lacroix C, Fliss I (2004) Comparison of the sensitivity of commercial strains and infant isolates of bifidobacteria to antibiotics and bacteriocins. Int Dairy J 14:1041–1053

    CAS  Google Scholar 

  • KiBeom L (2004) Process Biochem 39:2233–2239

    Google Scholar 

  • Kim YH, Baick SC, Lee YG, Yu JH (1993) Korean J Dairy Sci 15:135–144

    Google Scholar 

  • Kim YJ, Baick SC, Yu JH (1995) Korean J Dairy Sci 17:167–173

    Google Scholar 

  • Klaver FAM, Kingma F, Weerkamp AH (1993) Growth and survival of bifidobacteria in milk. Neth Milk Dairy J 47:151–164

    Google Scholar 

  • Kneifel W, Jaros D, Erhard F (1993) Microflora and acidification properties of yogurt and yogurt-related products fermented with commercially available starter cultures. Int J Food Microbiol 18:179–189

    CAS  Google Scholar 

  • Koch N, Carnio MC (2001) Probiotics and health – the intestinal microflora. St-Hyacinthe, Edisem, pp. 64–77

    Google Scholar 

  • Kurultay Ö, Öksül Ö, Kaptan B (2006) Effects of different heat treatments of milk on some growth characteristics of mixed and single cell cultures of yoghurt bacteria. Milchwissenschaft 61:52–55

    CAS  Google Scholar 

  • Kyung HK, Young TK (1993) Kor J Food Sci Technol 25:130–135

    Google Scholar 

  • Laine R, Salminen S, Benno Y, Ouwehand AC (2003) Performance of bifidobacteria in oat-based media. Int J Food Microbiol 83:105–109

    Google Scholar 

  • Lanciotti R, Vannini L, Pittia P, Guerzoni ME (2004) Suitability of high-dynamic-pressure-treated milk for the production of yoghurt. Food Microbiol 21:753–760

    CAS  Google Scholar 

  • Lankaputhra WEV, Shah NP, Britz ML (1996) Survival of bifidobacteria during refrigerated storage in the presence of acid and hydrogen peroxide. Milchwissenschaft 51:65–69

    CAS  Google Scholar 

  • Laroia S, Martin JH (1991) Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented dairy desserts. Cult Dairy Prod J 26:13–24

    Google Scholar 

  • Larsen RF, Añón MC (1989) Effect of water activitya  w of milk on acid production by Streptococcus thermophilus and Lactobacillus bulgaricus. J Food Sci 54:917–921

    CAS  Google Scholar 

  • Lawrence RC, Thomas TD, Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J Dairy Res 43:141–193

    CAS  Google Scholar 

  • Leatherhead Food International (2006) The international market for functional foods, 3rd edn. Functional Food Market Report (ISBN 1 904007-82-1)

    Google Scholar 

  • Lee SK, Ji GE, Park YH (1999) The viability of bifidobacteria introduced into kimchi. Lett Appl Microbiol 28:153–156

    Google Scholar 

  • Libudzisz Z, Piatkiewicz A, Jakubowska J (1977) Characteristics of mixed-strain starters of Strreptococcus cremoris and Leuconostoc cremoris. Acta Aliment Pol 3:433–443

    CAS  Google Scholar 

  • Liu Z, Luo C (2002) Food Ferment Industr 28(10):18–21

    Google Scholar 

  • Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei ncdc-298. Int Dairy J 16:1190–1195

    CAS  Google Scholar 

  • Martensson O, Andersson C, Andersson K, Oste R, Holst O (2001) Formulation of an oat-based fermented product and its comparison with yoghurt. J Sci Food Agric 81:1314–1321

    CAS  Google Scholar 

  • Martensson O, Oste R, Holst O (2002) Microentrapment of lactobacilli in calcium alginate gels. Food Res Int 35(8):775–784

    Google Scholar 

  • Martinez-Villaluenga M, Gomez R (2007) Characterization of bifidobacteria as starters in fermented milk containing raffinose family of oligosaccharides from lupin as prebiotic. Int Dairy J 17:116–122

    CAS  Google Scholar 

  • McNally A (2007) www.nutraingredients.com/news/PrintNewsBis.asp?id=79535 September 13, 2007

  • Medina LM, Jordano R (1994) J Food Protect 57:731–733September 13, 2007

    Google Scholar 

  • Meile L, Ludwig W, Rueger U, Gut C, Kaufman P, Dasen G, Wenger S, Teuber M (1997) Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64

    Google Scholar 

  • Micanel N, Haynes IN, Playne MJ (1997) Viability of probiotics cultures in commercial. Australian yoghurts. Austral J Dairy Technol 52:24–27

    Google Scholar 

  • Mille Y, Obert JP, Beney L, Gervais P (2004) New drying process for lactic bacteria based on their dehydration behaviour in liquid medium. Biotechnol Bioeng 88:71–76

    CAS  Google Scholar 

  • Misra AK, Kuila RK (1991) Intensified growth of Bifidobacterium and preparation of Bifidobacterium bifidum for a dietary adjunct. Cult Dairy Prod J 26:4–6

    Google Scholar 

  • Mital BK, Steinkraus KH, Naylor HB (1974) Growth of lactic acid bacteria in soymilks. J Food Sci 39:1018-1022

    Google Scholar 

  • Mitchell SL, Gilliland SE (1983) Pepsinized Sweet Whey Medium for Growing Lactobacillus acidophilus for Frozen Concentrated Cultures. J Dairy Sci 66:712–718

    Google Scholar 

  • Modler HW, Villa-Garcia L (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult Dairy Prod J 28(1):4–8

    Google Scholar 

  • Mortazavian AM, Ehsani MR, Mousavi SM, Sohrabvandi S, Reinheimer JA (2006) Combined effects of temperature-related variables on the viability of probiotic micro-organisms in yogurt. Austral J Dairy Technol 61:248–252

    Google Scholar 

  • Murad HA, Fathy FA, Abdel-Ghani S (1997) Growth of bifidobacterium bifidum in Buffalo milk supplemented with peanut milk and some amino acids. Egypt J Dairy Sci 25:75–84

    CAS  Google Scholar 

  • Murti TW, Lamberet G, Bouillanne C, Desmazeaud MJ, Landon M (1993) Croissance des lactobacilles dans l'extrait de soja. Effets sur la viscosité, les composés volatils et la protéolyse. Sci Aliments 13:491–500

    CAS  Google Scholar 

  • Muthukumarasamy P, Allan-Wojtas P, Holley RA (2006) Stability of Lactobacillus reuteri in different types of microcapsules. J Food Sci 71:M20–M24

    CAS  Google Scholar 

  • Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111:164–169

    CAS  Google Scholar 

  • Nighswonger B, Brashears M, Gilliland SE (1996) Viability of Lactobacillus acidophilus and Lactobacillus casei in fermented milk products during refrigerated storage. J Dairy Sci 79:212–219

    CAS  Google Scholar 

  • Ostlie HM, Treimo J, Narvhus JA, De Vuyst L (2005) Effect of temperature on growth and metabolism of probiotic bacteria in milk. Int Dairy J 15:989–997

    CAS  Google Scholar 

  • Patel HM, Ruohang W, Oormila C, Pandiella SS, Webb C (2004) Biotechnol Prog 20:110–116

    CAS  Google Scholar 

  • Partanen L, Marttinen N, Alatossawa T (2001) Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst Appl Microbiol 24:500–506

    CAS  Google Scholar 

  • Pham TT, Shah NP (2008a) Effects of Lactulose Supplementation on the Growth of Bifidobacteria and  Biotransformation of Isoflavone Glycosides to Isoflavone Aglycones in Soymilk. J Agric Food Chem 56:4703–4709

    CAS  Google Scholar 

  • Pham TT, Shah NP (2008b) Effect of lactulose on biotransformation of isoflavone glycosides to aglycones in soymilk by lactobacilli. J Food Sci 73:M158–M165

    CAS  Google Scholar 

  • Prajapati JB, Shah NK, Dave JM (1987) Survival of Lactobacillus acidophilus in Blended-Spray Dried Acidophilus Prepareations. Austral J Dairy Technology 42:17–21

    Google Scholar 

  • Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress response of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability aftyer drying. Appl Environ Microbiol 69:917–925

    CAS  Google Scholar 

  • Raccach M, Marshall PS (1985) Effect of manganese ions on the fermentative activity of frozen-thawed lactobacilli. J Food Sci 50:665–668

    CAS  Google Scholar 

  • Ray-Chowdhury B, Chakraborty R, Raychaudhuri U (2008) Study on β-galactosidase enzymatic activity of herbal yogurt. Int J Food Sci Nutr 59:116–122

    Google Scholar 

  • Reid AA, Champagne CP, Gardner N, Fustier P, Vuillemard JC (2007) Survival in Food Systems of Lactobacillus rhamnosus R011 Microentrapped in Whey Protein Gel Particles. J Food Sci 72:M31–M36

    CAS  Google Scholar 

  • Rodas BA, Angulo JO, De La Cruz J, Garcia HS (2002) Preparation of probiotic buttermilk with Lactobacillus reuteri. Milchwissenschaft 57:26–28

    CAS  Google Scholar 

  • Roy D (2005) Lait-Milk Sci Int 85:39–56

    CAS  Google Scholar 

  • Roy D, Mainville I, Mondou F (1997) Microecol Therapy 26:167–180

    Google Scholar 

  • Rybka S, Kailasapathy K (1995) The survival of culture bacteria in fresh and freeze-dried AB yoghurts. Austral J Dairy Technol 50:51–57

    Google Scholar 

  • Rybka S, Kailasapathy K (1997) Effect of freeze drying and storage on the microbiological and physical properties of AB-yoghurt. Milchwissenschaft 52:390–394

    CAS  Google Scholar 

  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajarvi I, Matto J (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214

    CAS  Google Scholar 

  • Samona A, Robinson RK (1994) Effect of yoghurt cultures on the survival of bifidobacteria in fermented milks. J Soc Dairy Technol 47:58–60

    Google Scholar 

  • Savard T, Beaulieu C, Gardner NJ, Champagne CP (2002) Characterization of spoilage yeasts isolated from fermented vegetables and inhibition by lactic, acetic and propionic acids. Food Microbiol 19:363–373

    CAS  Google Scholar 

  • Savard T, Gardner N, Champagne CP (2003) Croissance de cultures de Lactobacillus et de Bifidobacterium dans un jus de légumes et viabilité au cours de l’entreposage dans le jus de légumes fermenté. Sci Aliments 23:273–283

    Google Scholar 

  • Savoie S, Champagne CP, Chiasson S, Audet P (2007) Media and process parameters affecting growth, strain ratios and specific acidifying activities of mixed lactic starter containing aroma-producing and probiotic strains. J Appl Microbiol 103:163–174

    CAS  Google Scholar 

  • Saxelin M, Grenov B, Svensson U, Fondén R, Reniero R, Mattila-Sandholm T (1999) The technology of probiotics. Trends Food Sci Technol 10:387–392

    CAS  Google Scholar 

  • Saxelin M, Korpela R, Mayra-Makinen A (2003) Functional dairy products, vol 1. CRC Press/Woodhead Publishing Ltd, Boca Raton, pp. 1–15

    Google Scholar 

  • Scalabrini P, Rossi M, Spettoli P, Matteuzzi D (1998) Characterization of Bifidobacterium strains for use in soymilk fermentation. Int J Food Microbiol 39:213–219

    CAS  Google Scholar 

  • Sendra E, Fayos P, Lario Y, Fernandez-Lopez JA, Sayas-Barbera E, Perez-Alvarez J (2008) Food Microbiol 25:13–21

    CAS  Google Scholar 

  • Shah NP, Lankaputhra WEV, Britz ML, Kyle WSA (1995) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int Dairy J 5:515–521

    Google Scholar 

  • Shah NP, Ravula RR (2000) Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Austral J Dairy Technol 55:127–131

    CAS  Google Scholar 

  • Shah NP, Warnakulsuriya E, Lankaputhra WEV (1997) Improving viability of Lactobacillus and acidophilus and Biofidobacterium spp. in yogurt. Int Dairy J 7:349–356

    Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 54:557–561

    Google Scholar 

  • Sheu TY, Marshall RT, Heymann A (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci 76:1902–1907

    CAS  Google Scholar 

  • Shihata A, Shah NP (2000) Proteolytic profiles of yogurt and probiotic bacteria. Int Dairy J 10:401–408

    CAS  Google Scholar 

  • Shihata A, Shah NP (2002) Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on texture of yogurt, exopolysaccharide production and survival of bacteria. Int Dairy J 12:765–772

    CAS  Google Scholar 

  • Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M (1992) Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306

    CAS  Google Scholar 

  • Shin HS, Lee JH, Pestka JJ, Ustonol Z (2000) Growth, activity and viability of commercial Bifidobacterium spp in skim milk containing oligosaccharides and inulin. J Food Sci 65:884–887

    CAS  Google Scholar 

  • Shurda GG (1980) Appl Biochem Microbiol 16:11–16

    Google Scholar 

  • Sinha RN, Shukla AK, Lal M, Ranganathan B (1982) Rehydration of Freeze Dried Cultures of Lactic Streptococci. J Food Sci 47:668–669

    Google Scholar 

  • Sinha RP (1990) Effect of growth media and extended incubation on the appearance of lactose-nonfermenting variants in lactococci. J Food Protect 53:629–635

    Google Scholar 

  • Siuta-Cruce P, Goulet J (2001) Improving probiotic survival rates. Food Technol 55:36–42

    CAS  Google Scholar 

  • Srivinas H, Prabha HR, Shankar PA (1997) Characteristics of cultured milk, yogurt and probiotic yogurts prepared from prerefrigerated milks. J Food Sci Technol 34:162–164

    Google Scholar 

  • Stanton C, Gardiner G, Lynch PB, Collins JK, Fitzgerald G, Ross RP (1998) Probiotic Cheese. Int Dairy J 8:491–496

    CAS  Google Scholar 

  • Stern NJ, Hesseltine C, Wang H, Konishi F (1977) Lactobacillus acidophilus utilization of sugars and production of a fermented soybean product. Can Inst Food Sci Technol J 10:197–200

    CAS  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alignate-starch and evaluation of survival in stimulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62:47–55

    CAS  Google Scholar 

  • Sumangala G, Lanwei Z, Ming KH, Xin Z, Mingruo G (2005) Oats based symbiotic beverage containing L. plantarum, L paracasei and L. acidophilus. J Food Sci 70:M216–M223

    Google Scholar 

  • Talwalkar A, Kailasapathy K (2003a) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Austral J Dairy Technol 58:36–39

    Google Scholar 

  • Talwalkar A, Kailasapathy K (2003b) Metabolic and Biochemical Responses of Probiotic Bacteria to Oxygen. J Dairy Sci 86:2537–2546

    CAS  Google Scholar 

  • Talwalkar A, Miller CW, Kailasapathy K, Nguyen MH (2004) Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. Int J Food Sci Technol 39:606–611

    Google Scholar 

  • Tamime AY, Marshall VME, Robinson RK (1995) Microbiological and technological aspects of milks fermented by bifidobacteria. J Dairy Res 62:151–187

    CAS  Google Scholar 

  • Tamime AY, Robinson RK (1985) Yoghurt science and technology. Pergamon Press, Oxford, p. 431

    Google Scholar 

  • Torriani S, Gardini F, Guerzoni ME, Dellagio F (1996) Use of response surface methodology to evaluate some variables affecting the growth and acidification characteristics of yogurt cultures. Int Dairy J 6:625–636

    Google Scholar 

  • Truelstrup-Hansen L, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidofacterium ssp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45

    Google Scholar 

  • Tsangalis D, Ashton JF, McGill AEJ, Shah NP (2002) Enzymic transformation of isoflavone phytoestrogens in soya milk by b-glucosidase-producing bifidobacteria. J Food Sci 67:3104–3113

    CAS  Google Scholar 

  • Tsangalis D, Shah NP (2004) Metabolism of oligosaccharides and aldehydes and production of organic acids in soya milk by probiotic bifidobacteria. Int J Food Sci Technol 39:541–554

    CAS  Google Scholar 

  • Tsen JH, Huang HY, An-Erl-King V (2007) J Gen Appl Microbiol 53:215–219

    CAS  Google Scholar 

  • Ustunol Z, Gandhi H (2001) Growth and viability of commercial Bifidobacterium spp. in honey-sweetened skim milk. J Food Protect 64:1775–1779

    CAS  Google Scholar 

  • Vasiljevic T, Kealy T, Mishra VK (2007) Effect of Beta-Glucan Addition to a Probiotic Containing Yogurt. Journal of Food Science. J Food Sci 72:C405–C411

    CAS  Google Scholar 

  • Villegas E, Gilliland SE (1998) Hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis at 5°C. J Food Sci 63:1070–1074

    CAS  Google Scholar 

  • Vinderola CG, Costa GA, Regenhardt S, Reinheimer JA (2002) Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J 12:579–589

    CAS  Google Scholar 

  • Vinderola CG, Gueimonde M, Delgado T, Reinheimer JA, de los Reyes-Gavilan CG (2000) Characteristics of carbonated fermented milk and survival of probiotic bacteria. Int Dairy J 10:213–220

    CAS  Google Scholar 

  • Wang Y, Corrieu G, Beal C (2005) Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88:21–29

    CAS  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2002) Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19:501–508

    Google Scholar 

  • Yajima M, Hashimoto S, Saita T, Matsuzaki K(1992)European Patent Application, EP 0 486 738 A1, EP 90–312757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Champagne, C.P. (2009). Some Technological Challenges in the Addition of Probiotic Bacteria to Foods. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_19

Download citation

Publish with us

Policies and ethics