Skip to main content

Manufacture of Probiotic Bacteria

  • Reference work entry

Abstract

Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a w :

Water activity

AU :

Activity Unit

B. :

Bifidobacterium

CFU :

Colony Forming Units

DVS :

Direct Vat Set

FAO :

Food and Agriculture Organization

FOS :

Fructoolisaccharides

GIT :

Gastro Intestinal Tract

GRAS :

Generally Regarded as Safe

L. :

Lactobacillus

LAB :

Lactic Acid Bacteria

Lc. :

Lactococcus

MRS :

de Man Rogosa Sharpe media

RCM :

Reinforced Clostridium Media

RSM :

Reconstituted Skimmed Milk

RVP :

Relative Vapor Pressure

subsp. :

subspecies

WHO :

World Health Organization

References

  • Abadias M, Teixido N, Usall J, Benabarre A, Vinas I (2001) Viability, efficacy, and storage stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. J Food Prot 64:856–861

    CAS  Google Scholar 

  • Abee T, Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol 50:65–91

    CAS  Google Scholar 

  • Abu-Taraboush HM, Al-Dagal MM, Al-Royli MA (1998) Growth, viability, and proteolytic activity of bifidobacteria in whole camel milk. J Dairy Sci 81:354–361

    CAS  Google Scholar 

  • Ahn JB, Hwang HJ, Park JH (2001) Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen. J Microbiol Biotechnol 11:443–451

    Google Scholar 

  • Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, Von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65:351–354

    CAS  Google Scholar 

  • Ananta E, Knorr D (2003) Pressure-induced thermotolerance of Lactobacillus rhamnosus GG. Food Res Intern 36:991–997

    Google Scholar 

  • Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409

    CAS  Google Scholar 

  • Baati L, Fabre-Gea C, Auriol D, Blanc PJ (2000) Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol 59:241–247

    CAS  Google Scholar 

  • Babu V, Mital BK, Garg SK (1992) Effect of tomato juice addition on the growth and activity of Lactobacillus acidophilus. Int J Food Microbiol 17:67–70

    CAS  Google Scholar 

  • Bayrock D, Ingledew WM (1997a) Mechanism of viability loss during fluidized bed drying of baker’s yeast. Food Res Intern 30:417–425

    Google Scholar 

  • Bayrock D, Ingledew WM (1997b) Fluidized bed drying of baker’s yeast: moisture levels, drying rates, and viability changes during drying. Food Res Intern 30:407–415

    Google Scholar 

  • Benthin S, Villadsen J (1996) Amino acid utilization by Lactococcus lactis subsp. cremoris FD1 during growth on yeast extract or casein peptone. J Appl Bacteriol 80:65

    CAS  Google Scholar 

  • Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489

    CAS  Google Scholar 

  • Boutibonnes P, Tranchard C, Hartke A, Thammavongs B, Auffray Y (1992) Is thermotolerance correlated to heat-shock protein synthesis in Lactococcus lactis subsp. lactis? Int J Food Microbiol 16:227–236

    CAS  Google Scholar 

  • Bovill RA, Mackey BM (1997) Resuscitation of “non-culturable” cells from aged cultures of Campylobacter jejuni. Microbiology (Reading, England) 143:(Pt 5), 1575–1581

    CAS  Google Scholar 

  • Boyaval P (1989) Lactic acid bacteria and metal ions. Lait 69:87–113

    CAS  Google Scholar 

  • Brennan M, Wanismail B, Johnson MC, Ray B (1986) Cellular damage in dried Lactobacillus acidophilus. J Food Prot 49:47–53

    CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    CAS  Google Scholar 

  • Burns P, Vinderola G, Molinari F, Reinheimer J (2008) Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. Int J Dairy Technol 61:156–164

    CAS  Google Scholar 

  • Calicchia ML, Wang CIE, Nomura T, Yotsuzuka F, Osato DW (1993) Selective enumeration of Bifidobacterium bifidum, Enterococcus faecium, and streptomycin-resistant Lactobacillus acidophilus from a mixed probiotic product. J Food Prot 56:954–957

    Google Scholar 

  • Capela P, Hay TKC, Shah NP (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Intern 39:203–211

    CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003) Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. J Appl Microbiol 94:947–952

    CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14:835–847

    CAS  Google Scholar 

  • Champagne CP, Gardner N, Brochu E, Beaulieu Y (1991) The freeze-drying of lactic acid bacteria. A review. Can Inst Sci Technol J 24: 118–128

    Google Scholar 

  • Champagne CP, Gardner NJ, Lacroix C (2007) Fermentation technologies for the production of exopolysaccharide-synthesizing Lactobacillus rhamnosus concentrated cultures. Electr J Biotech 10:211–220

    CAS  Google Scholar 

  • Champagne CP, Gardner NJ, Roy D (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45:61–84

    CAS  Google Scholar 

  • Champagne CP, Lacroix C, Sodini-Gallot I (1994) Immobilized cell technologies for the dairy industry. Crit Rev Biotechnol 14:109–134

    CAS  Google Scholar 

  • Champagne CP, Møllgaard H (2008) Production of probiotic cultures and their addition in fermented foods. In: Farnworth ER (ed) Handbook of fermented functional foods, 2 edn. CRC Press, Boca Raton

    Google Scholar 

  • Chauviere G, Coconnier MH, Kerneis S, Darfeuille-Michaud A, Joly B, Servin AL (1992) Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiol Lett 70:213–217

    CAS  Google Scholar 

  • Collado MC, Sanz Y (2006) Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. J Microbiol Methods 66:560–563

    CAS  Google Scholar 

  • Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70:1–12

    CAS  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    CAS  Google Scholar 

  • Corre C, Madec MN, Boyaval P (1992) Production of concentrated Bifidobacterium bifidum. J Chem Technol Biotechnol 53:189–194

    CAS  Google Scholar 

  • Dave RI, Shah NP (1996) Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. J Dairy Sci 79:1529–1536

    CAS  Google Scholar 

  • Dave RI, Shah NP (1998) Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J Dairy Sci 81:2804–2816

    CAS  Google Scholar 

  • De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    CAS  Google Scholar 

  • Dellaglio F, Felis GE, Torriani S, Sørensen K, Johansen E (2005) Genomic characterisation of starter cultures. In: Tamime AY (ed) Probiotic dairy products. Blackwell Publishing, Ayr

    Google Scholar 

  • Desjardins ML, Roy D, Goulet J (1991) β-galactosidase and proteolytic activities of bifidobacteria in milk: A preliminary study. Milchwissenschaft 46:11–13

    CAS  Google Scholar 

  • Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936

    CAS  Google Scholar 

  • Desmond C, Stanton C, Fitzgerald GF, Collins K, Paul Ross R (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808

    Google Scholar 

  • Desmond C, Ross RP, O’callaghan, E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93:1003–1011

    CAS  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    CAS  Google Scholar 

  • Doleyres Y, Fliss I, Lacroix C (2002a) Quantitative determination of the spatial distribution of pure-and mixed-strain immobilized cells in gel beads by immunofluorescence. Appl Microbiol Biotechnol 59:297–302

    CAS  Google Scholar 

  • Doleyres Y, Fliss I, Lacroix C (2004a) Continuous production of mixed lactic starters containing probiotics using immobilized cell technology. Biotechnol Prog 20:145–150

    CAS  Google Scholar 

  • Doleyres Y, Fliss I, Lacroix C (2004b) Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. J Appl Microbiol 97:527–539

    CAS  Google Scholar 

  • Doleyres Y, Paquin C, Leroy M, Lacroix C (2002b) Bifidobacterium longum ATCC 15707 cell production during free- and immobilized-cell cultures in MRS-whey permeate medium. Appl Microbiol Biotechnol 60:168–173

    CAS  Google Scholar 

  • Elli M, Zink R, Reniero R, Morelli L (1999) Growth requirements of Lactobacillus johnsonii in skim and UHT milk. Int Dairy J 9:507–513

    Google Scholar 

  • FAO/WHO (2001) Evaluation of health and nutritional properties of powder milk with live lactic acid bacteria. Joint Report from FAO/WHO expert consultation 1–4 October 2001

    Google Scholar 

  • Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    CAS  Google Scholar 

  • Fonseca F, Beal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90

    CAS  Google Scholar 

  • Fonseca F, Passot S, Cunin O, Marin M (2004a) Collapse Temperature of Freeze-Dried Lactobacillus bulgaricus Suspensions and Protective Media. Biotechnol Prog 20:229–238

    CAS  Google Scholar 

  • Fonseca F, Passot S, Lieben P, Marin M (2004b) Collapse temperature of bacterial suspensions: the effect of cell type and concentration. Cryo Letters 25:425–434

    Google Scholar 

  • Font De Valdez G, Savoy De Giori G, De Ruiz Holgado AP, Oliver G (1985) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341

    Google Scholar 

  • Foster JW, Hall HK (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172:771–778

    CAS  Google Scholar 

  • Fowler A, Toner M (2005) Cryo-injury and biopreservation. Ann NY Acad Sci 1066:119–135

    CAS  Google Scholar 

  • Fu WY, Etzel MR (1995) Spray drying of Lactococcus lactis ssp. lactis C 2 and cellular injury. J Food Sci 60:195–200

    CAS  Google Scholar 

  • Gahan CG, O’driscoll B, Hill C (1996) Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol 62:3128–3132

    CAS  Google Scholar 

  • Galdeano CM, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226

    CAS  Google Scholar 

  • Gardiner GE, O’sullivan E, Kelly J, Auty MA, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    CAS  Google Scholar 

  • GIA (2008) Probiotics. A Global Strategic Business Report California, USA, Global Industry Analysts, Inc

    Google Scholar 

  • Goldin BR, Gorbach SL (1992) Probioitcs for humans. In: Fuller R (ed) Probiotics, the scientific basis Chapman & Hall, London

    Google Scholar 

  • Gomes AMP, Malcata FX (1998) Development of probiotic cheese manufactured from goat milk: response surface analysis via technological manipulation. J Dairy Sci 81:1492–1507

    CAS  Google Scholar 

  • Gomes AMP, Malcata FX (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10:139–157

    CAS  Google Scholar 

  • Gonzalez SN, Apella MC, Romero NC, De Macias MEN, Oliver G (1993) Inhibition of enteropathogens by lactobacilli strains used in fermented milk. J Food Prot 56:773–776

    Google Scholar 

  • Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39:237–238

    CAS  Google Scholar 

  • Hartemink R, Rombouts FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. J Microbiol Methods 36:181–192

    CAS  Google Scholar 

  • Hartke A, Bouche S, Gansel X, Boutibonnes P, Auffray Y (1994) Starvation-Induced Stress Resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60(9):3474–3478

    Google Scholar 

  • Hartke A, Bouche S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp lactis. Current Microbiol 33:194–199

    CAS  Google Scholar 

  • Hayashi H, Kumazawa E, Saeki Y, Lahicka Y (1983) Continuous vacuum dryer for energy saving. Drying Technol 1:275–284

    Google Scholar 

  • Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374S

    CAS  Google Scholar 

  • Hofmann AF, Molino G, Milanese M, Belforte G (1983) Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J Clin Invest 71:1003–1022

    CAS  Google Scholar 

  • Honer C (1995) Culture shift. Dairy Field 178:54–58

    Google Scholar 

  • Hood SK, Zoitola EA (1988) Effect of low pH on the ability of lactobacillus acidophilus to survive and adhere to human intestinal cells. J Food Sc 53:1514–1516

    Google Scholar 

  • Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260

    Google Scholar 

  • Hull RR, Roberts AV (1984) Differential enumeration of Lactobacillus acidophilus in yoghurt. Aust J Dairy Tech 39:160–163

    Google Scholar 

  • Hull RR, Roberts AV, Mayes JJ (1984) Survival of Lactobacillus acidophilus in yoghurt. Aust J Dairy Tech 39:164–166

    Google Scholar 

  • Hyronimus B, Le Marrec C, Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197

    CAS  Google Scholar 

  • In’t Veld G, Driessen AJ, Konings WN (1992) Effect of the unsaturation of phospholipid acyl chains on leucine transport of Lactococcus lactis and membrane permeability. Biochimica et biophysica acta 1108:31–39

    Google Scholar 

  • Kailasapathy K, Rybka S (1997) L. acidophilus and Bifidobacterium spp.: their therapeutic potential and survival in yogurt. Aust J Dairy Tech 52:28–35

    Google Scholar 

  • Kearney N, Stanton C, Desmond C, Coakley M, Collins JK, Fitzgerald G, Ross RP (2008) Challenges facing development of probiotic-containing functional foods. In: Farnworth ER (ed) Handbook of fermented functional foods, 2nd edn. CRC Press, Boca Rota

    Google Scholar 

  • Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43:346–350

    CAS  Google Scholar 

  • King V. AE, Su JT (1993) Dehydration of Lactobacillus acidophilus. Process Biochem 28:47–52

    Google Scholar 

  • Klaver FAM, Kingma F, Weerkamp AH (1993) Growth and survival of bifidobacteria in milk. Nederlands melk en Zuiveltijdschrift 47:151–164

    Google Scholar 

  • Knorr D (1998) Technology aspects related to microorganisms in functional foods. Trends Food Sci Technol 9:295–306

    CAS  Google Scholar 

  • Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525

    CAS  Google Scholar 

  • Kourkoutas Y, Xolias V, Kallis M, Bezirtzoglou E, Kanellaki M (2005) Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem 40:411–416

    CAS  Google Scholar 

  • Kullen MJ, Klaenhammer TR (1999) Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33:1152–1161

    CAS  Google Scholar 

  • Kurmann JA (1988) Starters for fermented milks. Bull Int Dairy Federation 227:41–55

    Google Scholar 

  • Lacroix C (2005) Immobilized cell technology, an efficient tool for producing food cultures. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 96:15–25

    CAS  Google Scholar 

  • Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr Opin Biotechnol 18:176–183

    CAS  Google Scholar 

  • Lahtinen SJ, Gueimonde M, Ouwehand AC, Reinikainen JP, Salminen SJ (2006) Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol 23:571–577

    Google Scholar 

  • Leach RH, Scott WJ (1959) The influence of rehydration on the viability of dried micro-organisms. J Gen Microbiol 21:295–307

    CAS  Google Scholar 

  • Lee YK, Salminen S (1995) The coming age of probioitcs. Trends Food Sci Technol 6:241–245

    Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86

    Google Scholar 

  • Liew SL, Ariff AB, Raha AR, Ho YW (2005) Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. Int J Food Microbiol 102:137–142

    CAS  Google Scholar 

  • Linders LJM, Kets EPW, De Bont JAM, Riet VAN’T, K (1998) Combined influence of growth and drying conditions on the activity of dried Lactobacillus plantarum. Biotechnol Prog 14:537–539

    CAS  Google Scholar 

  • Liong M, Shah N (2005) Optimization of Growth of Lactobacillus casei ASCC 292 and Production of Organic Acids in the Presence of Fructooligosaccharide and Maltodextrin. J Food Sci 70:M113–M210

    CAS  Google Scholar 

  • Liu Z, Jiang Z, Zhou K, Li P, Liu G, Zhang B (2007) Screening of bifidobacteria with acquired tolerance to human gastrointestinal tract. Anaerobe 13:215–219

    CAS  Google Scholar 

  • Macedo RF, Soccol CR, Freitas RJS (1998) Production of low cost beverage with soya milk, buffalo cheese whey and cow milk fermented by Lactobacillus casei shirota and Bifidobacterium adolescentis. J Sci Ind Res 57:679–685

    Google Scholar 

  • Marshall VM, Cole WM, Vega JR (1982) A yogurt-like product made by fermenting ultrafiltered milk containing elevated whey proteins with Lactobacillus-acidophilus. J Dairy Res 49:665–671

    CAS  Google Scholar 

  • Masters K (1985) Analytical methods and properties of dried dairy products. In: Hansen R (ed) Evaporation, membrane filtration and spray-drying in milk powder and cheese production. North European Dairy Journal, Vanlose, Denmark

    Google Scholar 

  • Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    CAS  Google Scholar 

  • Mccoy DR (1992) Method for growing acid-producing bacteria. US, US Patent 5,116 737

    Google Scholar 

  • Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP (2008) Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem 106:1406–1416

    CAS  Google Scholar 

  • Miao S, Mills S, Stanton C, Fitzgerald GF, Roos Y, Ross PR (2008) Effect of disaccharides on survival during storage of freeze dried probioitcs. Dairy Sci Technol 88:19–30

    CAS  Google Scholar 

  • Miller B, Puhan Z (1981) Possibilities of shortened fermentation of acidophilus milk. Schweiz. Milchw. Forschung 9:49–55

    Google Scholar 

  • Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J food Microbiol 103:109–115

    Google Scholar 

  • Mital BK, Garg SK (1992) Acidophilus milk products: manufacture and therapeutics. Food Rev Int 8:347–389

    CAS  Google Scholar 

  • Modler HW (1994) Bifidogenic factors- Sources, metabolism and applications. Int Dairy J 4:383–407

    Google Scholar 

  • Morgensen G, Salminen S, O’Brien J, Ouwehand AC, Holzapfel WH, Shortt C (2002). Inventory of microorganisms with a documented history of use in food. Bull Int Dairy Federation 377:10–18

    Google Scholar 

  • Murad HA, Fathy FA (1997) Growth of Bifidobacterium bifidum in buffalo milk supplemented with peanut milk and some amino acids. Egyptian J Dairy Sci 25:75–84

    CAS  Google Scholar 

  • Murti TW, Bouillanne C, Landon M, Desmazeaud MJ (1993) Bacterial growth and volatile compounds in yoghurt-type products from soymilk containing Bifidobacterium spp. J Food Sci 58:153–157

    CAS  Google Scholar 

  • Neeser JR, Chambaz A, Golliard M, Link-Amster H, Fryder V, Kolodziejczyk E (1989) Adhesion of colonization factor antigen II-positive enterotoxigenic Escherichia coli strains to human enterocytelike differentiated HT-29 cells: a basis for host-pathogen interactions in the gut. Infect Immun 57:3727–3734

    CAS  Google Scholar 

  • Oberman H, Libudzisz Z (1998) Fermented milks. In: Wood BJB (ed) Microbiology of fermented foods. Blackie Academic & Professional, London

    Google Scholar 

  • Ouellette V, Chevalier P, Lacroix C (1994) Continuous fermentation of a supplemented milk with immobilized Bifidobacterium infantis. Biotechnology Techniques 8:45–50

    CAS  Google Scholar 

  • Ouwehand AC, Salminen SJ (1998) The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J 8:749–758

    Google Scholar 

  • Pacher B, Kneifel W (1996) Development of a culture medium for the detection and enumeration of bifidobacteria in fermented milk products. Int Dairy J 6:43–64

    Google Scholar 

  • Péter G, Reichart O (2001) The effect of growth phase, cryoprotectants and freezing rates on the survival of selected micro-organisms during freezing and thawing. Acta Aliment 2001:30:89–97

    Google Scholar 

  • Petschow BW, Talbott RD (1990) Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. J Clin Microbiol 28:287–292

    CAS  Google Scholar 

  • Piston RL, Gilliland SE (1994) Influence of frozen and subsequent refrigerated storage in milk on ability of Lactobacillus acidophilus to assimilate cholesterol. Cultured Dairy Products Journal 9:11–29

    Google Scholar 

  • Prajapati JB, Shah RK, Dave JM (1987) Survival of Lactobacillus acidophilus in blended-spray dried acidophilus preparations. Aust J Dairy Tech 42:17–21

    Google Scholar 

  • Prasad J, Mcjarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925

    CAS  Google Scholar 

  • Proulx M, Gauthier SF, Roy D (1994) Comparison of bifidobacterial growth-promoting activity of ultrafiltered casein hydrolyzate fractions. Le Lait 74:139–152

    CAS  Google Scholar 

  • Rana R, Gandhi DN (2000) Effect of basal medium and pH on the growth of Lactobacillus acidophilus. indian. J Dairy Sci 53:338–342

    Google Scholar 

  • Rasic JL, Kurmann JA (1983) Bifidobacteria and their role. Microbiological, nutritional-physiological, medical and technological aspects and bibliography. Experientia Suppl 39:1–295

    CAS  Google Scholar 

  • Roy D (2001) Media for the isolation and enumeration of bifidobacteria in dairy products. Int J Food Microbiol 69:167–82

    CAS  Google Scholar 

  • Roy D, Dussault F, Ward P (1990) Growth requirements of Bifidobacterium strains in milk. Milchwissenschaft 45:500–502

    Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Lett 75:171–182

    CAS  Google Scholar 

  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajarvi I, Matto J (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214

    CAS  Google Scholar 

  • Salminen S, Ouwehand A, Benno Y, Lee YK (1999) Probioitcs: how should they be defined? Trends in Food Science and Technology 10:107–110

    CAS  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2006) Effect of carbohydrates on the survival of Lactobacillus helveticus during vacuum drying. Lett Appl Microbiol 42:271–276

    CAS  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol Prog 23(2): 302–315

    Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2008) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol

    Google Scholar 

  • Sarem F, Sarem-Damerdji LO, Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett Appl Microbiol 22:439–442

    CAS  Google Scholar 

  • Savard T, Gardner N, Champagne CP (2003) Croissance de cultures de Lactobacillus et de Bifidobacterium dans un jus de légumes et viabilité au cours de l’entreposage dans le jus de légumes fermenté. Sciences des aliments 23:273–283

    Google Scholar 

  • Savoie S, Champagne CP, Chiasson S, Audet P (2007) Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains. J Appl Microbiol 103:163–174

    CAS  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    CAS  Google Scholar 

  • Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 82:213–222

    CAS  Google Scholar 

  • SelmerOlsen E, Sorhaug T, Birkeland SE, Pehrson R (1999) Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration. J Ind Microbiol Biotechnol 23:79–85

    CAS  Google Scholar 

  • Shah NP (1997) Bifidobacteria: Characteristics and potential for application in fermented milk products. Milchwissenschaft 52:16–21

    CAS  Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    CAS  Google Scholar 

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of betl, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177

    CAS  Google Scholar 

  • Shelef LA, Bahnmiller KR, Zemel MB, Monte LM (1988) Fermentation of soymilk with commercial freeze-dried starter lactic cultures. J Food Process Preserv 12:187–195

    Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2005) Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99:493–501

    CAS  Google Scholar 

  • Siuta-Cruce P, Goulet J (2001) Improving probiotic survival rates. Food Technol 55:42

    Google Scholar 

  • Srinivas D, Mital BK, Garg SK (1990) Utilization of sugars by Lactobacillus acidophilus strains. Int J Food Microbiol 10:51–57

    CAS  Google Scholar 

  • Taillandier P, Gilis F, Portugal FR, Laforce P, Strehaiano P (1996) Influence of medium composition, pH and temperature on the growth and viability of Lactobacillus acidophilus. Biotechnol Lett 18:775–780

    CAS  Google Scholar 

  • Tamime AY, Marshall M, Robinson RK (1995) Microbiological and technological aspects of milks fermented by bifidobacteria. J Dairy Res 62:151–187

    CAS  Google Scholar 

  • Taniguchi M, Kotani N, Kobayashi T (1987) High concentration cultivation of Bifidobacterium longum in fermenter with cross-flow filtration. Appl Microbiol Biotechnol 25:438–441

    CAS  Google Scholar 

  • Teixeira P, Castro H, Kirby R (1994) Inducible thermotolerance in Lactobacillus bulgaricus. Lett Appl Microbiol 18:218–221

    Google Scholar 

  • Teixeira P, Castro H, Kirby R (1995a) Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J Appl Microbiol 78:456–462

    Google Scholar 

  • Teixeira P, Castro H, Mohacsi-Farkas C, Kirby R (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol 83:219–226

    CAS  Google Scholar 

  • To BCS, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62:576–585

    CAS  Google Scholar 

  • Van De Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216

    CAS  Google Scholar 

  • Ventling BL, Mistry V (1993) Growth Characteristics of Bifidobacteria in Ultrafiltered Milk. J Dairy Sci 76:962–971

    CAS  Google Scholar 

  • Ventura M, Lee JH, Canchaya C, Zink R, Leahy S, Moreno-Munoz JA, O’connell-Motherway M, Higgins D, Fitzgerald GF, O’sullivan DJ (2005) Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl Environ Microbiol 71:8692

    CAS  Google Scholar 

  • Wai SN, Mizunoe Y, Takade A, Yoshida S (2000) A comparison of solid and liquid media for resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila. Arch Microbiol 173:307–310

    CAS  Google Scholar 

  • Walker DC, Girgis HS, Klaenhammer TR (1999) The groESL chaperone operon of Lactobacillus johnsonii. Appl Environ Microbiol 65:3033–3041

    CAS  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93:209–217

    Google Scholar 

  • Wasserman AE, Hopkins WJ (1957) Studies in the recovery of viable cells of freeze-dried Serratia marcescens. Appl Microbiol 5:295–300

    CAS  Google Scholar 

  • Wasserman AE, Lessner JM, West MK (1954) Reversal of the streptomycin injury of Escherichia coli. J Gen Physiol 38:213–223

    CAS  Google Scholar 

  • Waterman SR, Small PL (1998) Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl Environ Microbiol 64:3882–3886

    CAS  Google Scholar 

  • Wright CT, Klaenhammer TR (1981) Calcium-induced alteration of cellular morphology affecting the resistance of lactobacillus acidophilus to freezing. Appl Environ Microbiol 41:807–815

    CAS  Google Scholar 

  • Wright CT, Klaenhammer TR (1983) Influence of calcium and manganese on dechaining of Lactobacillus bulgaricus. Appl Environ Microbiol 46:785–792

    CAS  Google Scholar 

  • Zamora LM, Carretero C, Pares D (2006) Comparative survival rates of lactic acid bacteria isolated from blood, following spray-drying and freeze-drying. Food Sci Technol Int 12:77

    Google Scholar 

  • Zayed G, Roos YH (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem 39:1081–1086

    CAS  Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol 99:333–338

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Muller, J.A., Ross, R.P., Fitzgerald, G.F., Stanton, C. (2009). Manufacture of Probiotic Bacteria. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_18

Download citation

Publish with us

Policies and ethics