Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem

  • Randal Buddington


Natural and man-made ecosystems are routinely managed to increase productivity and provide desired characteristics. The management approaches most commonly used include the addition of desired organisms, provision of fertilizers or feeds to encourage desired species, alteration of the physical or chemical features of the environment, and the selective removal of undesirable species. The selection of specific management strategies and their success are dependent on a thorough understanding of existing ecosystem characteristics and the short and long-term responses to the management strategy.


Inflammatory Bowel Disease Celiac Disease Short Chain Fatty Acid Probiotic Bacterium Short Bowel Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


ATP-binding cassette


Eolorectal cancer


Gastrointestinal Tract


Inflammatory bowel disease


irritable bowel syndrome with constipation


irritable bowel syndrome with diarrhea


Necrotizing enterocolitis


NOD-like receptor


Nucleotide-binding oligomerization domain


Pathogen associated molecular pattern


Short Chain Fatty Acids


Sodium Glucose cotransporter-1


Toll-like Receptor


  1. Alverdy J, Zaborina O, Wu L (2005) The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care 8:205–209Google Scholar
  2. Amarri S, Benatti F, Callegari ML, Shahkhalili Y, Chauffard F, Rochat F, Acheson KJ, Hager C, Benyacoub J, Galli E, Rebecchi A, Morelli L (2006) Changes of gut microbiota and immune markers during the complementary feeding period in healthy breast-fed infants. J Pediatr Gastroenterol Nutr 42:488–495Google Scholar
  3. Arslanoglu S, Moro GE, Boehm G (2007) Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 137:2420–2424Google Scholar
  4. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 138:1091–1095Google Scholar
  5. Balamurugan R, Janardhan HP, George S, Raghava MV, Muliyil J, Ramakrishna BS (2008) Molecular studies of fecal anaerobic commensal bacteria in acute diarrhea in children. J Pediatr Gastroenterol Nutr 46:514–519Google Scholar
  6. Banas JA, Loesche WJ, Nace GW (1988) Classification and distribution of large intestinal bacteria in nonhibernating and hibernating leopard frogs (Rana pipiens). Appl Environ Microbiol 54:2305–2310Google Scholar
  7. Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC (2007) Probiotics for necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr 45:569–576Google Scholar
  8. Bartholome AL, Albin DM, Baker DH, Holst JJ, Tappenden KA (2004) Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. JPEN J Parenter Enteral Nutr 28:210–222Google Scholar
  9. Beaslas O, Torreilles F, Casellas P, Simon D, Fabre G, Lacasa M, Delers F, Chambaz J, Rousset M, Carriere V (2008) Transcriptome response of enterocytes to dietary lipids: impact on cell architecture, signaling and metabolism genes. Am J Physiol Gastrointest Liver Physiol 295:G942–G952Google Scholar
  10. Bengmark S (2008) Is probiotic prophylaxis worthwhile in patients with predicted severe acute pancreatitis? Nat Clin Pract Gastroenterol Hepatol 5:602–603Google Scholar
  11. Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T (1989) Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 55:1100–1105Google Scholar
  12. Benno Y, Nakao H, Uchida K, Mitsuoka T (1992) Impact of the advances in age on the gastrointestinal microflora of beagle dogs. J Vet Med Sci 54:703–706Google Scholar
  13. Besselink MG, Timmerman HM, Buskens E, Nieuwenhuijs VB, Akkermans LM, Gooszen HG (2004) Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in patients with predicted severe acute pancreatitis (PROPATRIA): design and rationale of a double-blind, placebo-controlled randomised multicenter trial [ISRCTN38327949]. BMC Surg 4:12Google Scholar
  14. Bhan MK, Raj P, Khoshoo V, Bhandari N, Sazawal S, Kumar R, Srivastava R, Arora NK (1989) Quantitation and properties of fecal and upper small intestinal aerobic microflora in infants and young children with persistent diarrhea. J Pediatr Gastroenterol Nutr 9:40–45Google Scholar
  15. Bjørneklett A, Viddal KO, Midtvedt T, Nygaard K (1981) Intestinal and gastric bypass. Changes in intestinal microecology after surgical treatment of morbid obesity in man. Scand J Gastroenterol 16:681–687Google Scholar
  16. Bohn E, Bechtold O, Zahir N, Frick JS, Reimann J, Jilge B, Autenrieth IB (2006) Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Inflamm Bowel Dis 12:853–862Google Scholar
  17. Brouwer ML, Wolt-Plompen SA, Dubois AE, van der Heide S, Jansen DF, Hoijer MA, Kauffman HF, Duiverman EJ (2006) No effects of probiotics on atopic dermatitis in infancy: a randomized placebo-controlled trial. Clin Exp Allergy 36:899–906Google Scholar
  18. Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383Google Scholar
  19. Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132:472–477Google Scholar
  20. Butel MJ, Waligora-Dupriet AJ, Szylit O (2002) Oligofructose and experimental model of neonatal necrotising enterocolitis. Br J Nutr 87(Suppl. 2):S213–S219Google Scholar
  21. Butterworth AD, Thomas AG, Akobeng AK (2008) Probiotics for induction of remission in Crohnâs disease. Cochrane Database Syst Rev (3):CD006634Google Scholar
  22. Cario E, Podolsky DK (2005) Intestinal epithelial TOLLerance versus in TOLLerance of commensals. Mol Immunol 42:887–893Google Scholar
  23. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051SGoogle Scholar
  24. Clavel T, Haller D (2007) Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Curr Issues Intest Microbiol 8:25–43Google Scholar
  25. Comstock LE, Kasper DL (2006) Bacterial glycans: key mediators of diverse host immune responses. Cell 126:847–850Google Scholar
  26. Connell JH (1978) Diversity in tropical forests and coral reefs. Science 199:1302–1310Google Scholar
  27. Coombes JL, Maloy KJ (2007) Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin Immunol 19:116–126Google Scholar
  28. Cuomo R, Savarese MF, Gargano R (2007) Almost all irritable bowel syndromes are post-infectious and respond to probiotics: consensus issues. Dig Dis 25:241–244Google Scholar
  29. de Vrese M, Marteau PR (2007) Probiotics and prebiotics: effects on diarrhea. J Nutr 137:803S–811SGoogle Scholar
  30. Deplancke B, Vidal O, Ganessunker D, Donovan SM, Mackie RI, Gaskins HR (2002) Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr 76:1117–1125Google Scholar
  31. Dickinson BD, Altman RD, Nielsen NH, Sterling ML (2001) Council on Scientific Affairs, American Medical Association. Drug interactions between oral contraceptives and antibiotics. Obstet Gynecol 98:853–860Google Scholar
  32. Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, Engstrand L, Jansson JK (2008) Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2:716–727Google Scholar
  33. Dogi CA, Galdeano CM, Perdigón G (2008) Gut immune stimulation by non pathogenic Gram(+) and Gram(−) bacteria. Comparison with a probiotic strain. Cytokine 41:223–231Google Scholar
  34. Drouault-Holowacz S, Bieuvelet S, Burckel A, Cazaubiel M, Dray X, Marteau P (2008) A double blind randomized controlled trial of a probiotic combination in 100 patients with irritable bowel syndrome. Gastroenterol Clin Biol 32:147–152Google Scholar
  35. Dunne C (2001) Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis 7:136–145Google Scholar
  36. Eckmann L (2006) Innate immunity. In: Johnson LR, Barrett KE, Ghishan FK, Merchant JL, Said HM, Wood J (eds) Physiology of the gastrointestinal tract, 4th ed, Elsevier, Amsterdam, pp 1033–1066Google Scholar
  37. Ewe K (1988) Intestinal transport in constipation and diarrhoea. Pharmacology 36(Suppl. 1):73–84Google Scholar
  38. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170Google Scholar
  39. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111Google Scholar
  40. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345Google Scholar
  41. Freitas M, Axelsson LG, Cayuela C, Midtvedt T, Trugnan G (2002) Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol 118:149–161Google Scholar
  42. Fujiwara S, Seto Y, Kimura A, Hashiba H (2001) Establishment of orally-administered Lactobacillus gasseri SBT2055SR in the gastrointestinal tract of humans and its influence on intestinal microflora and metabolism. J Appl Microbiol 90:343–352Google Scholar
  43. Gaskins HR, Croix JA, Nakamura N, Nava GM (2008) Impact of the intestinal microbiota on the development of mucosal defense. Clin Infect Dis 46(Suppl. 2):S80–S86Google Scholar
  44. Geier MS, Butler RN, Howarth GS (2006) Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther 5:1265–1269Google Scholar
  45. Geier MS, Butler RN, Howarth GS (2007) Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol 115:1–11Google Scholar
  46. Gil A, Rueda R (2000) Modulation of intestinal microflora by specific dietary components. Microb Ecol Health Dis (Suppl. 2): 31–39Google Scholar
  47. Gratz S, Wu QK, El-Nezami H, Juvonen RO, Mykkänen H, Turner PC (2007) Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 Cells. Appl Environ Microbiol 73:3958–3964Google Scholar
  48. Guarner F (2007) Prebiotics in inflammatory bowel diseases. Br J Nutr 98(Suppl. 1):S85–S89Google Scholar
  49. Harvey RB, Andrews K, Droleskey RE, Kansagra KV, Stoll B, Burrin DG, Sheffield CL, Anderson RC, Nisbet DJ (2006) Qualitative and quantitative comparison of gut bacterial colonization in enterally and parenterally fed neonatal pigs. Curr Issues Intest Microbiol 7:61–64Google Scholar
  50. Haverson K, Rehakova Z, Sinkora J, Sver L, Bailey M (2007) Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs. Vet Immunol Immunopathol 119:243–253Google Scholar
  51. Hébuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6:49–54Google Scholar
  52. Heilpern D, Szilagyi A (2008) Manipulation of intestinal microbial flora for therapeutic benefit in inflammatory bowel diseases: review of clinical trials of probiotics, pre-biotics and synbiotics. Rev Recent Clin Trials 3:167–184Google Scholar
  53. Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE (1998) The effect of food restriction on the composition of intestinal microflora in rats. Exp Gerontol 33:239–247Google Scholar
  54. Hol J, van Leer EH, Elink Schuurman BE, de Ruiter LF, Samsom JN, Hop W, Neijens HJ, de Jongste JC, Nieuwenhuis EE (2008) Cow’s milk allergy modified by elimination and Lactobacilli study group. The acquisition of tolerance toward cow’s milk through probiotic supplementation: a randomized, controlled trial. J Allergy Clin Immunol 121:1448–1454Google Scholar
  55. Hooper DU, Vitousek PM (1997) The effects ofplant composition and diversity on ecosystem processes. Science 177:1302–1305Google Scholar
  56. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118Google Scholar
  57. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884Google Scholar
  58. Huebner ES, Surawicz CM (2006) Probiotics in the prevention and treatment of gastrointestinal infections. Gastroenterol Clin North Am 35:355–365Google Scholar
  59. Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T (2001) Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 280:G368–G380Google Scholar
  60. Ishida RK, Faintuch J, Paula AM, Risttori CA, Silva SN, Gomes ES, Mattar R, Kuga R, Ribeiro AS, Sakai P, Barbeiro HV, Barbeiro DF, Soriano FG, Cecconello I (2007) Microbial flora of the stomach after gastric bypass for morbid obesity. Obes Surg 17:752–758Google Scholar
  61. Itoh A, Tsujikawa T, Fujiyama Y, Bamba T (2003) Enhancement of aquaporin-3 by vasoactive intestinal polypeptide in a human colonic epithelial cell line. J Gastroenterol Hepatol 18:203–210Google Scholar
  62. Johnson LR (Ed) (2006) Physiology of the Gastrointestinal Tract, 4th edn. Elsevier, New YorkGoogle Scholar
  63. Johnston BC, Supina AL, Ospina M, Vohra S (2007) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev CD004827Google Scholar
  64. Juste C (2005) Dietary fatty acids, intestinal microbiota and cancer. Bull Cancer 92:708–721Google Scholar
  65. Kaminsky LS, Zhang QY (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 31:1520–1525Google Scholar
  66. Kaneko T, Bando Y, Kurihara H, Satomi K, Nonoyama K, Matsuura N (1997) Fecal microflora in a patient with short-bowel syndrome and identification of dominant lactobacilli. J Clin Microbiol 35:3181–3185Google Scholar
  67. Kato M (2008) Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet 23(2):87–94Google Scholar
  68. Khalif IL, Quigley EM, Konovitch EA, Maximova ID (2005) Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig Liver Dis 37:838–849Google Scholar
  69. Kimura Y, Nagata Y, Buddington RK (2004) Some dietary fibers increase elimination of orally administered polychlorinated biphenyls but not that of retinol in mice. J Nutr 134:135–142Google Scholar
  70. Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93(Suppl. 1):S35–S40Google Scholar
  71. Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402Google Scholar
  72. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198Google Scholar
  73. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2008) Long-term safety and impact on infection rates of postnatal probiotic and prebiotic (synbiotic) treatment: randomized, double-blind, placebo-controlled trial. Pediatrics 122:8–12Google Scholar
  74. Lampe JW (2007) Diet, genetic polymorphisms, detoxification, and health risks. Altern Ther Health Med 13:S108–S111Google Scholar
  75. Larue R, Yu Z, Parisi VA, Egan AR, Morrison M (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7:530–543Google Scholar
  76. Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E (2007) Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J Cell Physiol 213:834–843Google Scholar
  77. Leenen CH, Dieleman LA (2007) Inulin and oligofructose in chronic inflammatory bowel disease. J Nutr 137(Suppl. 11):2572S–2575SGoogle Scholar
  78. Lesniewska V, Rowland I, Laerke HN, Grant G, Naughton PJ (2006) Relationship between dietary-induced changes in intestinal commensal microflora and duodenojejunal myoelectric activity monitored by radiotelemetry in the rat in vivo. Exp Physiol 91:229–237Google Scholar
  79. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651Google Scholar
  80. Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, Kaukinen K (2008) Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 152:552–558Google Scholar
  81. Lu L, Walker WA (2001) Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 73:1124S–1130SGoogle Scholar
  82. Lundin A, Bok CM, Aronsson L, Björkholm B, Gustafsson JA, Pott S, Arulampalam V, Hibberd M, Rafter J, Pettersson S (2008) Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol 10:1093–1103.Google Scholar
  83. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045SGoogle Scholar
  84. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121:580–591Google Scholar
  85. Magalhaes JG, Tattoli I, Girardin SE (2007) The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol 19:106–115Google Scholar
  86. Mai V, Braden CR, Heckendorf J, Pironis B, Hirshon JM (2006) Monitoring of stool microbiota in subjects with diarrhea indicates distortions in composition. J Clin Microbiol 44:4550–4552Google Scholar
  87. Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, Peré-Trepat E, Rochat F, Cherbut C, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:205Google Scholar
  88. McFarland LV, Dublin S (2008) Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J Gastroenterol 14:2650–2661Google Scholar
  89. Mengheri E (2008) Health, probiotics, and inflammation. J Clin Gastroenterol 42(Suppl. 3) Pt 2:S177–S178Google Scholar
  90. Mitsuoka T (1992) Intestinal flora and aging. Nutr Rev 50:438–446Google Scholar
  91. Moreau C-M, Gaboriau-Routhiau V (2001) Influence of resident intestinal microflora on the development and functions of the gut-associated lymphoid tissue. Microb Ecol Health Dis 13:65–86Google Scholar
  92. Morita T, Kasaoka S, Ohhashi A, Ikai M, Numasaki Y, Kiriyama S (1998) Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch. J Nutr 128:1156–1164Google Scholar
  93. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol 5:1212–1220Google Scholar
  94. Neto UF, Toccalino H, Dujovney F (1976) Stool bacterial aerobic overgrowth in the small intestine of children with acute diarrhoea. Acta Paediatr Scand 65:609–615Google Scholar
  95. Nettelbladt CG, Katouli M, Volpe A, Bark T, Muratov V, Svenberg T, Möllby R, Ljungqvist O (1997) Starvation increases the number of coliform bacteria in the caecum and induces bacterial adherence to caecal epithelium in rats. Eur J Surg 163:135–142Google Scholar
  96. Nightingale JM (1999) Management of patients with a short bowel. Nutrition 15:633–637Google Scholar
  97. Norin E, Midtvedt T (2000) Interactions of bacteria with the host: alteration of microflora-associated characteristics of the host; non-immune functions. Microb Ecol Health Dis (Suppl. 2):186–193Google Scholar
  98. O’Keefe SJ (2008) Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol 24:51–58Google Scholar
  99. Oli MW, Petschow BW, Buddington RK (1998) Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea: recovery of the intestinal bacteria. Dig Dis Sci 43:138–147Google Scholar
  100. Oude Elferink RP, de Waart R (2007) Transporters in the intestine limiting drug and toxin absorption. J Physiol Biochem 63:75–81Google Scholar
  101. Paine MF, Oberlies NH (2007) Clinical relevance of the small intestine as an organ of drug elimination: drug-fruit juice interactions. Expert Opin Drug Metab Toxicol 3:67–80Google Scholar
  102. Palazzo M, Balsari A, Rossini A, Selleri S, Calcaterra C, Gariboldi S, Zanobbio L, Arnaboldi F, Shirai YF, Serrao G, Rumio C (2007) Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J Immunol 178:4296–4303Google Scholar
  103. Physiology of the Gastrointestinal Tract (2006) In: Johnson LR, Barrett KE, Ghishan FK, Merchant JL, Said HM, Wood J (eds), 4th edn. Elsevier, AmsterdamGoogle Scholar
  104. Pool-Zobel BL, Sauer J (2007) Overview of experimental data on reduction of colorectal cancer risk by inulin-type fructans. J Nutr 137(Suppl. 11):2580S–2584SGoogle Scholar
  105. Quigley EM, Flourie B (2007) Probiotics and irritable bowel syndrome: a rationale for their use and an assessment of the evidence to date. Neurogastroenterol Motil 19:166–172Google Scholar
  106. Rabiu BA, Gibson GR (2002) Carbohydrates: a limit on bacterial diversity within the colon. Biol Rev Camb Philos Soc 77:443–453Google Scholar
  107. Rechkemmer G, Rönnau K, von Engelhardt W (1988) Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A 90(4):563–568Google Scholar
  108. Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137(Suppl. 11):2493S–2502SGoogle Scholar
  109. Rodríguez CA, González J, Alvir MR, Redondo R, Cajarville C (2003) Effects of feed intake on composition of sheep rumen contents and their microbial population size. Br J Nutr 89:97–103Google Scholar
  110. Rolfe V (1999) Colonic fluid and electrolyte transport in health and disease. Vet Clin North Am Small Anim Pract 29:577–588Google Scholar
  111. Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F (2007) Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 51:562–568Google Scholar
  112. Sartor RB, Blumberg RS, Braun J, Elson CO, Mayer LF (2007) CCFA microbial-host interactions workshop: highlights and key observations. Inflamm Bowel Dis 13:600–619Google Scholar
  113. Schaible UE, Kaufmann SH (2005) A nutritive view on the host-pathogen interplay. Trends Microbiol 13:373–380Google Scholar
  114. Schnabl KL, Van Aerde JE, Thomson AB, Clandinin MT (2008) Necrotizing enterocolitis: a multifactorial disease with no cure. World J Gastroenterol 14:2142–2161Google Scholar
  115. Schneider SM, Girard-Pipau F, Anty R, van der Linde EG, Philipsen-Geerling BJ, Knol J, Filippi J, Arab K, Hébuterne X (2006) Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota. Clin Nutr 25:82–90Google Scholar
  116. Schultz M, Göttl C, Young RJ, Iwen P, Vanderhoof JA (2004) Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J Pediatr Gastroenterol Nutr 38:293–297Google Scholar
  117. Shaw MH, Reimer T, Kim YG, Nuñez G (2008) NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 20:377–382Google Scholar
  118. Shen TY, Qin HL, Gao ZG, Fan XB, Hang XM, Jiang YQ (2006) Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World J Gastroenterol 12:4352–4358Google Scholar
  119. Shima T, Fukushima K, Setoyama H, Imaoka A, Matsumoto S, Hara T, Suda K, Umesaki Y (2008) Differential effects of two probiotic strains with different bacteriological properties on intestinal gene expression, with special reference to indigenous bacteria. FEMS Immunol Med Microbiol 52:69–77Google Scholar
  120. Shirkey TW, Siggers RH, Goldade BG, Marshall JK, Drew MD, Laarveld B, Van Kessel AG (2006) Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med  231:1333–1345Google Scholar
  121. Silvi S, Rumney CJ, Cresci A, Rowland IR (1999) Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol 86:521–530Google Scholar
  122. Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714Google Scholar
  123. Simpson KW, Batt RM, Jones D, Morton DB (1990) Effects of exocrine pancreatic insufficiency and replacement therapy on the bacterial flora of the duodenum in dogs. Am J Vet Res 51:203–206Google Scholar
  124. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system, 2nd ed. Cambridge University Press, UKGoogle Scholar
  125. Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54(Pt 12):1239–1242Google Scholar
  126. Sullivan A, Nord CE (2005) Probiotics and gastrointestinal diseases. J Intern Med 257:78–92Google Scholar
  127. Takano M, Yumoto R, Murakami T (2006) Expression and function of efflux drug transporters in the intestine. Pharmacol Ther 109:137–161Google Scholar
  128. Tannock GW (2007) What immunologists should know about bacterial communities of the human bowel. Semin Immunol 19:94–105Google Scholar
  129. Tappenden KA, Deutsch AS (2007) The physiological relevance of the intestinal microbiota--contributions to human health. J Am Coll Nutr 26:679S–683SGoogle Scholar
  130. Tilman D, Knops J, Wedin D, Reich P, Mitchie M, Siemann E (1997) The influence of functional diversity and composition of ecosystem processes. Science 277:1300–1302Google Scholar
  131. Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108Google Scholar
  132. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064Google Scholar
  133. Torres MI, Rios A (2008) Current view of the immunopathogenesis in inflammatory bowel disease and its implications for therapy. World J Gastroenterol 14:1972–1980Google Scholar
  134. Trespi E, Ferrieri A (1999) Intestinal bacterial overgrowth during chronic pancreatitis. Curr Med Res Opin 15(1):47–52Google Scholar
  135. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137Google Scholar
  136. Veereman G (2007) Pediatric applications of inulin and oligofructose. J Nutr 137(Suppl. 11):2585S–2589SGoogle Scholar
  137. Walker WA (2000) Role of nutrients and bacterial colonization in the development of intestinal host defense. J Pediatr Gastroenterol Nutr 30(Suppl. 2):S2–S7Google Scholar
  138. Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE, Soeters PB, Baeten CG (2002) Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 45:621–627Google Scholar
  139. Whelan K, Judd PA, Preedy VR, Simmering R, Jann A, Taylor MA (2005) Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr 135:1896–1902Google Scholar
  140. Winkler P, Ghadimi D, Schrezenmeir J, Kraehenbuhl JP (2007) Molecular and cellular basis of microflora-host interactions. J Nutr 137(3 Suppl. 2):756S–772SGoogle Scholar
  141. Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186Google Scholar
  142. Xenoulis PG, Palculict B, Allenspach K, Steiner JM, Van House AM, Suchodolski JS (2008) Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol Ecol 66:579–589Google Scholar
  143. Zoppi G, Cinquetti M, Luciano A, Benini A, Muner A, Bertazzoni Minelli E (1998) The intestinal ecosystem in chronic functional constipation. Acta Paediatr 87:836–841Google Scholar
  144. Zuccato E, Venturi M, Di Leo G, Colombo L, Bertolo C, Doldi SB, Mussini E (1993) Role of bile acids and metabolic activity of colonic bacteria in increased risk of colon cancer after cholecystectomy. Dig Dis Sci 38:514–519Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Randal Buddington
    • 1
  1. 1.Health and Sports SciencesUniversity of MemphisMemphisUSA

Personalised recommendations