Advertisement

Economics and Vaccines

  • J. Bos
  • M. Postma
Reference work entry

Abstract:

Infectious diseases are an important cause of mortality and morbidity, causing approximately 27% of the total disease burden in  DALY. A large part of DALY lost due to infectious diseases could be prevented by improving existing vaccination programs for the population. Diseases such as  childhood cluster diseases, hepatitis A and B, respiratory infections caused by influenza, pneumococcal and meningococcal infections, and Hemophilus influenzae type B, are for a large part preventable by current vaccines.

The implementation of new vaccine programs or/and strategies is often a costly process with long term consequences. Vaccination programs often concern a large part of the population, and have a large budget impact. Once a vaccination program has started, it is (due to equity reasons) extremely difficult to cease the program. To gain a better understanding of the potential impact on health benefits and costs of a vaccine intervention, health-economic evaluations are frequently used, which estimate the future impact on health gains and costs. Health-economic evaluations are mostly presented as one of the following four types of analysis: cost-minimization, cost-benefit, cost-effectiveness and cost-utility analysis. In this chapter, we provide an overview of the main techniques and challenges associated with health economic evaluations of vaccination programs, such as the choice of the model. Additionally, an overview of health economic evaluations that have been performed on currently implemented vaccination strategies is presented. From our analysis it follows that vaccine programs, and especially those against childhood cluster diseases, and vaccination of elderly against influenza are amongst the world’s most cost-effective interventions.

Keywords

Herpes Zoster Varicella Zoster Virus Influenza Vaccination Vaccination Program Pertussis Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

BCG

bacillus Calmette-Guérin

CBA

 cost benefit analysis

CEA

cost effectiveness analysis

CMA

cost minimization analysis

DALY

disability adjusted life year

DTPP

diphtheria, tetanus, pertussis and poliomyelitis

Hib

Hemophilus influenzae type b

HPV

human papilloma virus

IPV

inactivated poliomyelitis vaccine

MMR

measles, mumps and rubella

OPV

oral poliomyelitis vaccine

QALY

quality adjusted life year

WTP

willingness to pay

VZV

varicella zoster virus

References

  1. Akumu A, English M, et al. (2007). Bull World Health Organ. 85(7): 511–518.PubMedCrossRefGoogle Scholar
  2. Anderson RM, May RM. (1991). Infectious Diseases of Humans; Dynamics and Control. Oxford University Press, New York.Google Scholar
  3. Anonychuk A, Tricco A, et al. (2008). Pharmacoeconomics. 26: 17–32.PubMedCrossRefGoogle Scholar
  4. Austrian R. (1981). Proc Am Philos Soc. 125(1): 46–51.PubMedGoogle Scholar
  5. Baker CJ. (2007). N Engl J Med. 357: 1757–1759.PubMedCrossRefGoogle Scholar
  6. Banz K, Wagenpfeil S, et al. (2003). Vaccine. 21: 1256–1267.PubMedCrossRefGoogle Scholar
  7. Bart K, Foulds J, et al. (1996). Bull World Health Organ. 74: 35–45.PubMedGoogle Scholar
  8. Beutels P. (2001). Health Econ. 10: 751–774.PubMedCrossRefGoogle Scholar
  9. Beutels P, Bonanni P, et al. (1999). Vaccine. 17(19): 2400–2409.PubMedCrossRefGoogle Scholar
  10. Beutels P, Edmunds WJ, et al. (2002). Pharmacoeconomics. 20: 1–7.PubMedCrossRefGoogle Scholar
  11. Beutels P, Gay NJ. (2003). Epidemiol Infect. 130(2): 273–283.PubMedCrossRefGoogle Scholar
  12. Beutels P, Thiry N, van Damme P. (2007). Vaccine. 25(8): 1355–1367.PubMedCrossRefGoogle Scholar
  13. Bilcke J, Beutels P, et al. (2007). Cost-Effectiveness of Rotavirus Vaccination of Infants in Belgium. KCE, Brussels.Google Scholar
  14. Bonanni P, Pesavento G, et al. (2003). Vaccine. 21: 685–691.PubMedCrossRefGoogle Scholar
  15. Bos JM, van Alphen L, et al. (2008). “The use of modelling in the economic evaluation of vaccines. Expert Rev Pharmacoeconomics Outcomes Res. 2(5): 443–455.CrossRefGoogle Scholar
  16. Brisson M, Edmunds WJ. (2002). Vaccine. 20: 1113–1125.PubMedCrossRefGoogle Scholar
  17. Brisson M, Edmunds WJ, et al. (2000a). Vaccine. 18: 2775–2778.PubMedCrossRefGoogle Scholar
  18. Brisson M, Edmunds WJ, et al. (2000b). Epidemiol Infect. 125: 651–669.PubMedCrossRefGoogle Scholar
  19. Broughton E. (2007). J Public Health (Oxf). 29(4): 441–448.CrossRefGoogle Scholar
  20. Burls A, Jordan R, et al. (2006). Vaccine. 24(19): 4212–4221.PubMedCrossRefGoogle Scholar
  21. Caro J, Getsios D, et al. (2005). Pediatr Infect Dis J. 24(Suppl): S75–S82.PubMedCrossRefGoogle Scholar
  22. Caro JJ, Getsios D, et al. (2005). Pediatr Infect Dis J. 24(5 Suppl): S48–S54.PubMedGoogle Scholar
  23. Clemens J, Brenner R, et al. (1996). JAMA 275: 390–397.PubMedCrossRefGoogle Scholar
  24. Cookson R, Mc Daid D. (2003). Health Policy 63: 133–139.PubMedCrossRefGoogle Scholar
  25. Dasbach E, Elbasha E, et al. (2006). Epidemiol Rev 28: 88–100.PubMedCrossRefGoogle Scholar
  26. Edmunds WJ, Brisson M, et al. (2001). Vaccine. 19: 3076–3090.PubMedCrossRefGoogle Scholar
  27. Edmunds WJ, Brisson M, et al. (2002). Vaccine. 20: 1316–1330.PubMedCrossRefGoogle Scholar
  28. Edmunds WJ, Medley GF, et al. (1999). Stat Med. 18: 3262–3282.CrossRefGoogle Scholar
  29. Ekwueme DU, Strebel PM, et al. (2000). Arch Pediatr Adolesc Med. 154: 797–803.PubMedGoogle Scholar
  30. Evers S, Ament A, et al. (2007). Eur J Clin Microbiol. 26: 531–540.CrossRefGoogle Scholar
  31. Frazer I. (2007). Int J Infect Dis. 11: S10–S16.PubMedCrossRefGoogle Scholar
  32. Gay NJ, Pelletier L, et al. (1998). Vaccine. 16(8): 794–801.PubMedCrossRefGoogle Scholar
  33. Gwatkin DR, Guillot M. (1998). The Burden of Tropical Diseases Among the Poorest and Richest 20% of the Global Population. TDR/ER/RD/96.1, World Health Organization.Google Scholar
  34. Hay J, Daum R, et al. (1987). Pediatrics 80(3): 319–329.PubMedGoogle Scholar
  35. Hinman AR, Irons B, et al. (2002). Bull World Health Organ 80(4): 264–270.PubMedGoogle Scholar
  36. Iskedjian M, Walter JH, et al. (2004). Vaccine. 22: 4215–4227.PubMedCrossRefGoogle Scholar
  37. Jacobs R, Koff R, et al. (2002). Am J Gastroenterol. 97: 427–434.PubMedGoogle Scholar
  38. Jefferson T, Behrens R, et al. (1994). Vaccine. 12: 1379–1383.PubMedCrossRefGoogle Scholar
  39. Jit M, Edmunds W. (2007). Vaccine. 25: 3971–3979PubMedCrossRefGoogle Scholar
  40. Johannesson M, Meltzer D. (1998). Health Econ. 7(1): 1–7.PubMedCrossRefGoogle Scholar
  41. Kahn MM, Ehreth J. (2003). Vaccine. 21: 702–705.CrossRefGoogle Scholar
  42. Martens L, ten Velden G, et al. (1991). Ned Tijdschr Geneeskd. 135(1): 16–20.PubMedGoogle Scholar
  43. Miller E, Marshall R, et al. (1993). Rev Med Microbiol. 4: 222–230.Google Scholar
  44. Miller MA, Redd S, et al. (1998). Vaccine. 16(20): 1917–1922.PubMedCrossRefGoogle Scholar
  45. Paavonen J, Jenkins D, et al. (2007). Lancet. 369: 2161–2170.PubMedCrossRefGoogle Scholar
  46. Parkin D, Bray F. (2006). Vaccine. 24: S11–S25.CrossRefGoogle Scholar
  47. Pelletier L, Chung P, et al. (1998). Vaccine. 16(9): 989–996.PubMedCrossRefGoogle Scholar
  48. Platonov A, Griffiths U, et al. (2006). Vaccine. 24(13): 2367–2376.PubMedCrossRefGoogle Scholar
  49. Plotkin SA Mortimer EA. (1994). Vaccines, 2nd ed. W.B. Saunders Company, New York.Google Scholar
  50. Pokorn M, Kopac S, et al. (2001). Vaccine. 19(25–26): 3600–3605.PubMedCrossRefGoogle Scholar
  51. Postma M, Jansema P, et al. (2002). Drugs. 62(7): 1013–1024.PubMedCrossRefGoogle Scholar
  52. Postma MJ, Bos JM, et al. (2003). Eur J Health Econ.Google Scholar
  53. Purdy KW, Hay JW, et al. (2004). Clin Infect Dis. 39: 20–28.PubMedCrossRefGoogle Scholar
  54. Sellick JA, Jr., Longbine D, et al. (1992). Ann Intern Med. 116(12 Pt 1): 982–984.PubMedGoogle Scholar
  55. Sénécal M, Brisson M, et al. (2006). Quality of Life Lost Associated with Rotavirus Gastroenteritis in Canadian Families: A Prospective Community Based Study. 7th Canadian Immunization Conference, Winnipeg.Google Scholar
  56. Seward JF, Jumaan AO, et al. (2002). JAMA. 287: 2211–2222.CrossRefGoogle Scholar
  57. Shiell A, Jorm LR, et al. (1998). Aust N Z J Public Health. 22(1): 126–132.PubMedCrossRefGoogle Scholar
  58. Sisk J, Whang W, et al. (2003). Ann Intern Med. 138.Google Scholar
  59. Stevenson M, Beard S, et al. (2002). Vaccine. 20: 1778–1786.PubMedCrossRefGoogle Scholar
  60. Stover BH, Adams G, et al. (1994). Infect Control Hosp Epidemiol. 15(1): 18–21.PubMedCrossRefGoogle Scholar
  61. Thiry N, Beutels P, et al. (2003). Pharmacoeconomics. 21: 13–18.PubMedCrossRefGoogle Scholar
  62. Thompson KM, Duintjer Tebbens RJ. (2006). Risk Anal. 26: 1423–1440.PubMedCrossRefGoogle Scholar
  63. Thompson KM, Duintjer Tebbens RJ. (2007). Lancet. 369: 1363–1371.PubMedCrossRefGoogle Scholar
  64. Tormans G, Van Doorslaer E, et al. (1998). Eur J Pediatr. 157: 395–401.PubMedCrossRefGoogle Scholar
  65. Vesikari T, Matson D, et al. (2006). N Engl J Med. 354: 23–33.PubMedCrossRefGoogle Scholar
  66. Welte R, Trotter CL, et al. (2005). Pharmacoeconomics. 23(9): 855–874.PubMedCrossRefGoogle Scholar
  67. White CC, Koplan JP, et al. (1985). Am J Public Health. 75: 739–744.PubMedCrossRefGoogle Scholar
  68. Whitney G, Farley M, et al. (2003). N Engl J Med. 348: 1737–1746.PubMedCrossRefGoogle Scholar
  69. WHO. (2007). The World Health Report 2007 – A safer future: global public health security in the 21st century.Google Scholar
  70. WHO. (2008). Immunisation fact sheet Nr 288.Google Scholar
  71. Widdowson M, Meltzer M, et al. (2007). Pediatrics 119: 684–697.PubMedCrossRefGoogle Scholar
  72. Wood S, Nguyen V, et al. (2000). Pharmacoeconomics. 18(2): 173–183.PubMedCrossRefGoogle Scholar
  73. Zwanziger J, Szilagyi PG, et al. (2001). Health Serv Res. 36(5): 885–909.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • J. Bos
  • M. Postma

There are no affiliations available

Personalised recommendations