Advertisement

Quantification of Deaths and DALYs Due to Chronic Exposure to Arsenic in Groundwaters Utilized for Drinking, Cooking and Irrigation of Food-Crops

  • D. A. Polya
  • D. Mondal
  • A. K. Giri

Abstract:

 Groundwaters with arsenic concentrations higher than the WHO provisional guide value of 10 μg/L are found in many parts of the world. Widespread utilization of these groundwaters for drinking, irrigation of food crops and cooking over the past few decades has resulted in chronic exposure to tens of millions of people, annual excess deaths of the order of thousands and annual DALYs of the order of hundreds of thousands in Bangladesh, the worst impacted country. Chronic exposure to arsenic may result in a wide range of cancerous and non-cancerous deleterious health impacts; particularly for cancers, these health impacts may not manifest themselves until decades after the exposure. Many health end-points are non-fatal but nevertheless result in considerable loss of quality of life. Calculation of arsenic-attributable DALYs is therefore important to inform policy-makers.

Assessing the overall risk of utilization of arsenic-bearing groundwaters may be achieved, in principle, by quantifying (1) dose–response relationships; (2) exposure routes; and (3) groundwater arsenic hazard.

There is a clear association between chronic arsenic exposure and various cancers, particularly skin and lung cancers, at drinking water concentrations above 100 μg/L but there is considerable argument over the nature of dose–response relationships at concentrations much below this. Nutritional status, including intake of selenium and folate, genetic disposition, smoking habits, age and gender are all contributory factors to the risk of acquiring arsenic-related diseases as a result of a given chronic exposure.

The major exposure routes for arsenic from groundwaters are: (1) drinking groundwater; (2) eating rice and other food-crops irrigated with groundwater; and (3) indirectly through cooking rice with high arsenic groundwater.

Assessing the impact of various arsenic remediation options needs to explicitly consider potential risk-substitution and, in particular, the balance between DALYs arising from arsenic-related health impacts and those related to water-borne pathogens.

Keywords

Arsenic Concentration Arsenic Exposure Probabilistic Risk Assessment Chronic Arsenic Exposure Remediation Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

As, arsenic, DALY

disability adjusted life year

DG

dug well

DTW

deep  tubewell

GBD

global burden of disease study

PAF

 population attributable fraction

ppb

parts per billion

ppm

parts per million

PSF

pond sand filter

μg/L

micrograms/liter

RWH

rainwater harvesting

SMR

 standardized mortality ratio

STW

shallow tubewell

WHO

World Health Organization

Notes

Acknowledgments

This work is a joint output of the PRAMA and AquaTRAIN projects. PRAMA is a UKIERI (UK India Education and Research Initiative) project funded by the British Council, the UK Department for Innovation, Universities and Skills (DIUS), Office of Science and Innovation, the FCO, Department of Science and Technology, Government of India, The Scottish government, Northern Ireland, Wales, GSK, BP, Shell and BAE for the benefit of the India Higher Education Sector and the UK Higher Education Sector. AquaTRAIN is funded by the European Commission Sixth Framework Programme (2002–2006), Marie Curie Actions – Human Resources and Mobility Activity Area, Research Training Networks. DM acknowledges the receipt of an NERC Dorothy Hodgkins Postgraduate Award. We thank George Adamson, Dipankar Chakraborti, Tony Fletcher, Guy Howard, D.N. Guha Mazumder, Ross Nickson, Luis Rodriguiz-Lado and Allan Smith for discussions. The views expressed here are not necessarily those of any of the funding bodies or any of the individuals acknowledged here.

References

  1. Adamson GCD, Polya DA. (2007). J Environ Sci Health., Part A. 42: 1909–1917.CrossRefGoogle Scholar
  2. Ahsan H, Chen Y, Parvez F, Zablotska L, Argos M, Hussain I, Momotaj H, Levy D, Cheng Z, Slavkovitch V, van Geen A, Howe GR, Graziano JH. (2006). Am J Epidemiol. 163: 1138–1148.PubMedCrossRefGoogle Scholar
  3. Ahsan H, Chen Y, Kibrita MG, Slavkovich V, Parvez F, Jasmine F, Gamble MV, Graziano JH. (2007). Epidemiol Biomar Prevent. 16: 1270–1278.CrossRefGoogle Scholar
  4. Banerjee M, Sarkar J, Das JK, Mukherjee A, Sarkar AK, Mondal L, Giri AK. (2007). Carcinogenesis. 28: 672–676.PubMedCrossRefGoogle Scholar
  5. Brown J. (2004). Public Health Goal for Arsenic in Drinking Water. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.Google Scholar
  6. Cantor KP, Lubin JH. (2007). Toxicol Appl Pharmacol. 222: 252–255.PubMedCrossRefGoogle Scholar
  7. Charlet L, Polya DA. (2006). Elements. 2: 91–96.CrossRefGoogle Scholar
  8. Chen Y, Hall M, Graziano JH, Slavkovich V, van Geen A, Parvez F, Ahsan H. (2007a). Cancer Epidemiol Prevent. 16: 207–213.CrossRefGoogle Scholar
  9. Chen Y, Factor-Litvak P, Howe GR, Graziano JH, Brandt-Raul P, Parvez F, van Geen A, Ahsan H. (2007b). Am J Epidemiol. 165: 541–552.PubMedCrossRefGoogle Scholar
  10. Clasen TF, Cairncross S. (2004). Trop Med Int Health. 9: 187–191.PubMedCrossRefGoogle Scholar
  11. Cullen WR, Reimer KJ. (1989) Chem Rev. 89: 713–764.CrossRefGoogle Scholar
  12. De Chaudhuri S, Mahata J, Das JK, Mukherjee A, Ghosh P, Sau TJ, Mondal L, Basu S, Giri AK, Roychoudhury K. (2006). Mutat Res. 601: 102–112.PubMedCrossRefGoogle Scholar
  13. Fewtrell FR, Kay D. (2005). J Water Health. 3: 101–107.PubMedGoogle Scholar
  14. Gault AG, Rowland HAL, Charnock JM, Wogelius RA, Gomez-Morilla I, Vong S, Leng M, Samreth S, Sampson ML, Polya DA. (2008). Sci Total Environ. 393: 168–176.PubMedCrossRefGoogle Scholar
  15. Ghosh P, Basu A, Mahata J, Basu S, Sengupta M, Das JK, Mukherjee A, Sarkar AK, Mondal L, Ray K, Giri AK. (2006). Int J Cancer. 118: 2470–2478.PubMedCrossRefGoogle Scholar
  16. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Asfaque KN, Islam S, Hemond HF, Ahmed MF. (2002). Science. 298: 1602–1606.PubMedCrossRefGoogle Scholar
  17. Howard G, Ahmed MF, Shamsuddin A, Mahmud SG, Deere D. (2006). J Health Popul Nutr. 24: 346–355.PubMedGoogle Scholar
  18. Howard G, Ahmed MF, Teunis P, Mahmud SG, Davison A, Deere D. (2007). J Water Health. 5: 67–81.PubMedCrossRefGoogle Scholar
  19. Huq SMI, Joardar JC, Parvin S, Correll R, Naidu R. (2006). J Health Popol Nutr. 24: 305–316.Google Scholar
  20. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR. (2004). Nature. 430: 68–71.PubMedCrossRefGoogle Scholar
  21. Linberg A-L, Goessler W, Gurzau E, Koppova K, Rudnai P, Kumar R, Fletcher T, Leonardi G, Slotova K, Gheorgiu E, Vahter M. (2006). J Environ Monitor J Environ Monitor. 8: 203–208.Google Scholar
  22. Lokuge KM, Smith W, Caldwell B, Dear K, Milton A. (2004). Environ Health Perspect. 112(11): 1172–1177.PubMedCrossRefGoogle Scholar
  23. Mahata J, Basu A, Ghoshal S, Sarkar JN, Roy Ak, Poddar G, Nandy AK, Banerjee A, Ray K, Natarajan AT, Nilsson R, Giri Ak (2003). Mutation Res. 534(1-2): 133–143Google Scholar
  24. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH. (2007). J Natl Cancer Inst. 99: 920–928.PubMedCrossRefGoogle Scholar
  25. Mazumder DNG, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, Smith AH. (1998). Int J Epidemiol. 27: 871–877.CrossRefGoogle Scholar
  26. Mondal D, Adamson GCD, Nickson R, Polya DA. (2008). Appl Geochem in press. doi:10.1016/j.apgeochem.2008.06.009Google Scholar
  27. Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ. (2000). Environ Health Perspect. 108: 655–661.PubMedCrossRefGoogle Scholar
  28. Murray CJL, Acharya AK. (1997). J Health Econ. 16: 703–730.PubMedCrossRefGoogle Scholar
  29. Murray CJL, Lopez AD. (1996). In: Global Health Statistics. Global Burden of Disease and Injury Series, Vol. I and II. WHO/Harvard University Press, 1996.Google Scholar
  30. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E. (2005). Am J Epidemiol. 162: 1037–1049.PubMedCrossRefGoogle Scholar
  31. Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. (2006). Environ Health Perspect. 114: 641–648.PubMedCrossRefGoogle Scholar
  32. Nickson R, McArthur J, Burgess W, Matin Ahmed K, Ravenscrof P, Rahman M. (1998). Nature 395: 338.PubMedCrossRefGoogle Scholar
  33. NRC. (1999). In: Arsenic in Drinking Water. National Academy, Washington, DC.Google Scholar
  34. NRC. (2001). In: Arsenic in Drinking water. 2001 Update. National Academy, Washington, DC.Google Scholar
  35. Paustenbach DJ. (2000). J Toxicol Environ Health. 3: 179–291.CrossRefGoogle Scholar
  36. Polya DA, Gault AG, Niebe N, Feldmann P, Rosenboom JW, Gilligan E, Fredericks D, Milton AH, Sampson M, Rowland HAL, Lythgoe PR, Jones JC, Middleton C, Cooke DA. (2005). Mineral Mag. 69: 807–823.CrossRefGoogle Scholar
  37. Rahman MA, Hasegawa H, Rahman MA, Rahman MM, Miah MAM. (2006). Sci Total Environ. 370: 51–60.PubMedCrossRefGoogle Scholar
  38. Rahman MM, Mandal BK, Chowdhury TR, Sengupta MK, Chowdhury UK, Lodh D, Chanda CR, Basu GK, Mukherjee SC, Saha KC, Chakraborti D. (2003). J Environ Sci Health., Part A. 38: 25–59.CrossRefGoogle Scholar
  39. Ravenscroft P. (2007). Royal Geographical Society Annual Meeting 2007 http://www.geog.cam.ac.uk/research/projects/arsenic/symposium/S1.2_P_Ravenscroft.pdf; accessed 28/3/2008.
  40. Roberts LC, Hug SJ, Dittmar J, Voegelin A, Saha GC, Ali MA, Badruzzanian ABM, Kretzschniar R. (2007) Environ Sci Technol. 41: 5960–5966.PubMedCrossRefGoogle Scholar
  41. Rodriguez-Lado L, Polya DA, Winkel L, Berg M, Hegan A (2008). Appl. Geochem. in press.Google Scholar
  42. Roychowdhury T, Uchino T, Tokunaga H, Ando M. (2002). Food Chem Toxicol. 40: 1611–1621.PubMedCrossRefGoogle Scholar
  43. Smedley P, Kinniburgh D. (2002). Appl Geochem. 17: 517–568.CrossRefGoogle Scholar
  44. Smith AH, Smith MMH. (2004). Toxicology 198: 39–44.PubMedCrossRefGoogle Scholar
  45. Smith AH, Lingas E, Rahman M. (2000). B World Health Organ. 78: 1093–1103.Google Scholar
  46. USEPA. (2005) In: Issue Paper: Inorganic Arsenic Cancer Slope Factor, Final Draft, July 22, 2005Google Scholar
  47. Vahter ME. (2007) J Nutr. 137: 2798–2804.PubMedGoogle Scholar
  48. WHO. (2001) In: Environmental Health Criteria 224. Arsenic and Arsenic Compounds. World Health Organization. Geneva.Google Scholar
  49. Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA. (2006). Environ Sci Technol. 40: 4903–4908.PubMedCrossRefGoogle Scholar
  50. Yu WH, Harvey CM, Harvey CF. (2003). Water Resour Res. 39: 1146–1162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • D. A. Polya
  • D. Mondal
  • A. K. Giri

There are no affiliations available

Personalised recommendations