Years of Life Lost Due to Air Pollution in Switzerland: A Dynamic Exposure-Response Model

  • M. Röösli
Reference work entry


There is debate on how the effect of air pollution should be assessed. The dynamic exposure-response model integrates data from long-term epidemiological studies and studies of interventions to reduce pollution to estimate the impact of air pollution on adult and infant mortality. Based on this method  years of life lost (YLL) attributable to air pollution during 1 year in Switzerland were calculated.

A dynamic exposure-response model was implemented, which uses an exponential function (exp−kt) to model the change in mortality after cessation of air pollution. The model was populated with relative risk estimates and estimates of decay constant k from the literature. Air pollution exposure in Switzerland was modeled using data from emission inventories. YLL attributable to air pollution were calculated by taking the difference between observed survival probabilities in Switzerland in 2005 and modified survival probabilities, assuming a low  PM10 level of 7.5 μg/m3 during the year 2005.

Meta-analyses of three studies of adult mortality and five studies of infant mortality gave relative risks of 1.059 (95% confidence interval (CI): 1.031–1.088) and 1.056 (95% CI 1.026–1.088) per 10 μg/m3 increase in PM10 concentration. Decay constants k derived from two studies of the effects of closing down a steel mill in the Utah Valley and of the coal ban in Dublin were 0.88 and 0.11 per year. Assuming a decay constant k of 0.5 per year resulted in 48,200 (95% CI 25,600–72,000) YLL, with 3.6% being ascribed to infant deaths. Thirty-nine percent of the effect occurred in the same year and 78% within 3 years.

In contrast to traditional steady-state models the dynamic model allows changes in mortality following short-term increases or decreases in air pollution levels to be quantified. This type of information is of obvious interest to policy makers.


Infant Mortality Health Impact Assessment Excess Relative Risk Black Smoke PM10 Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:


black smoke


confidence interval


change in mortality in percent years


 excess relative risk (=RR-1)


decay constant


particulate matter


Particulate matter with an aerodynamic diameter of <10 μm


relative risk


time (in years)


total suspended particles




years of life lost


  1. Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Lawrence Beeson W, Yang JX. (1999). Am J Respir Crit Care Med. 159: 373–382.PubMedGoogle Scholar
  2. Barone-Adesi F, Vizzini L, Merletti F, Richiardi L. (2006). Eur Heart J. 27: 2468–2472.PubMedCrossRefGoogle Scholar
  3. Bartecchi C, Alsever RN, Nevin-Woods C, Thomas WM, Estacio RO, Bartelson BB, Krantz MJ. (2006). Circulation. 114: 1490–1496.PubMedCrossRefGoogle Scholar
  4. Bobak M, Leon DA. (1999). Epidemiology 10: 666–670.PubMedCrossRefGoogle Scholar
  5. Boldo E, Medina S, LeTertre A, Hurley F, Mucke HG, Ballester F, Aguilera I, Eilstein D. (2006). Eur J Epidemiol. 21: 449–458.PubMedCrossRefGoogle Scholar
  6. Burnett RT, Dewanji A, Dominici F, Goldberg MS, Cohen A, Krewski D. (2003). Environ Health Perspect. 111: 1170–1174.PubMedCrossRefGoogle Scholar
  7. Clancy L, Goodman P, Sinclair H, Dockery DW. (2002). Lancet. 360: 1210–1214.PubMedCrossRefGoogle Scholar
  8. Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Kunzli N, Gutschmidt K, Pope A, Romieu I, Samet JM, Smith K. (2005). J Toxicol Environ Health A. 68: 1301–1307.PubMedCrossRefGoogle Scholar
  9. DerSimonian R, Laird N. (1986). Control Clin Trials. 7: 177–188.PubMedCrossRefGoogle Scholar
  10. Filliger P, Puybonnieux-Texier V, Schneider J. (1999). Health Costs Due to Road Traffic-Related Air Pollution – PM10 Population Exposure. Federal Department of Environment, Transport, Energy and Communications, Bern.Google Scholar
  11. Forsberg B, Hansson HC, Johansson C, Areskoug H, Persson K, Jarvholm B. (2005). Ambio. 34: 11–19.PubMedGoogle Scholar
  12. From the Centers for Disease Control and Prevention. (2002) JAMA. 287: 2355–2356.Google Scholar
  13. Gehrig R, Buchmann B. (2003). Atmos Environ. 37: 2571–2580.CrossRefGoogle Scholar
  14. Goodman PG, Dockery DW, Clancy L. (2004). Environ Health Perspect. 112: 179–185.PubMedCrossRefGoogle Scholar
  15. Ha EH, Lee JT, Kim H, Hong YC, Lee BE, Park HS, Christiani DC. (2003). Pediatrics. 111: 284–290.PubMedCrossRefGoogle Scholar
  16. Hedley AJ, Wong CM, Thach TQ, Ma S, Lam TH, Anderson HR. (2002). Lancet. 360: 1646–1652.PubMedCrossRefGoogle Scholar
  17. Higgins JP, Thompson SG. (2002). Stat Med. 21: 1539–1558.PubMedCrossRefGoogle Scholar
  18. Hoek G, Brunekreef B, Goldbohm S, Fischer P, Brandt PA. van den (2002). Lancet. 360: 1203–1209.PubMedCrossRefGoogle Scholar
  19. Juster HR, Loomis BR, Hinman TM, Farrelly MC, Hyland A, Bauer UE, Birkhead GS. (2007). Am J Public Health. 97: 2035–2039.PubMedCrossRefGoogle Scholar
  20. Khuder SA, Milz S, Jordan T, Price J, Silvestri K, Butler P. (2007). Prev Med. 45: 3–8.PubMedCrossRefGoogle Scholar
  21. Krewski D, Burnett RT, Goldberg MS. (2000). Reanalysis of the Harvard Six Cities Study and American Cancer Society Study of Particulate Air Pollution and Mortality: Special Report. Health Effect Institute, Cambridge, MA, pp. (Available at
  22. Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Jr., Puybonnieux-Texier V, Quenel P, Schneider J, Seethaler R, Vergnaud JC, Sommer H. (2000). Lancet. 356: 795–801.PubMedCrossRefGoogle Scholar
  23. Künzli N, Medina S, Kaiser R, Quenel P, Horak F, Jr., Studnicka M. (2001). Am J Epidemiol. 153: 1050–1055.PubMedCrossRefGoogle Scholar
  24. Leksell I, Rabl A. (2001). Risk Anal. 21: 843–857.PubMedCrossRefGoogle Scholar
  25. Lipfert FW, Zhang J, Wyzga RE. (2000). J Air Waste Manag Assoc. 50: 1350–1366.PubMedGoogle Scholar
  26. Loomis D, Castillejos M, Gold DR, McDonnell W, Borja-Aburto VH. (1999). Epidemiology. 10: 118–123.PubMedCrossRefGoogle Scholar
  27. Max W, Rice DP, Sung HY, Zhang X, Miller L. (2004). Tob Control. 13: 264–267.PubMedCrossRefGoogle Scholar
  28. Mestl HE, Aunan K, Seip HM. (2007). Environ Int. 33: 831–840.PubMedCrossRefGoogle Scholar
  29. Miller BG, Hurley JF. (2003). J Epidemiol Commun Health. 57: 200–206.CrossRefGoogle Scholar
  30. Ostro B. (1994). Estimating the health effects of air pollutants. A method with an application to Jakarta. Policy Research Working Paper No. 1301, World Bank, Washington DC.Google Scholar
  31. Pope CA, 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. (2002). JAMA. 287: 1132–1141.PubMedCrossRefGoogle Scholar
  32. Pope CA, 3rd, Schwartz J, Ransom MR. (1992). Arch Environ Health. 47: 211–217.PubMedCrossRefGoogle Scholar
  33. Rabl A. (2003). J Air Waste Manag Assoc. 53: 41–50.PubMedGoogle Scholar
  34. Rabl A. (2006). Environ Health. 5: 1.PubMedCrossRefGoogle Scholar
  35. Roemer WH, van Wijnen JH. (2001). Environ Health Perspect. 109: 151–154.PubMedGoogle Scholar
  36. Röösli M, Künzli N, Braun-Fahrländer C, Egger M. (2005). Int J Epidemiol. 34: 1029–1035.PubMedCrossRefGoogle Scholar
  37. Sargent RP, Shepard RM, Glantz SA. (2004). Br Med J. 328: 977–980.CrossRefGoogle Scholar
  38. Schwartz J, Coull B, Laden F, Ryan L. (2008). Environ Health Perspect. 116: 64–69.PubMedCrossRefGoogle Scholar
  39. Sommer H, Lieb C, Heldstab J, Künzle T, Braun-Fahrlander C, Röösli M. (2004). Externe Gesundheitskosten durch verkehrsbedingte Luftverschmutzung [External costs due to traffic related air pollution]. Bundesamt für Raumentwicklung, Bern.Google Scholar
  40. Woodruff TJ, Grillo J, Schoendorf KC. (1997). Environ Health Perspect. 105: 608–612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • M. Röösli

There are no affiliations available

Personalised recommendations