The Use of Pharmacoepidemiological Databases to Assess Disease Burdens: Application to Diabetes

  • H. Støvring


Assessing the disease burden of diabetes in general populations is important for planning and monitoring public health initiatives.  Prevalence is the relative frequency of diseased subjects in a population, and is the default measure of disease burden. Traditional epidemiological methods for estimating prevalence are however costly, and so it has been suggested to exploit the advent of large scale pharmacoepidemiological databases for estimating diabetes prevalence, as these databases are available at nominal costs. In this paper we review how information on either gross volume sales of anti-diabetic agents or on prescription redemptions have been used to estimate the prevalence of diabetes, as well as  incidence and  mortality among treated. For studies based on gross volume sales, the critical prerequisite is to obtain valid estimates of average drug consumption among treated diabetics. Studies based on individual level information on prescription redemptions requires determination of treatment status, either explicitly via decision rules or implicitly via a stochastic model. For the latter, the  Waiting Time Distribution has been suggested. While prevalence estimates based on  pharmacoepidemiologic databases are found to underestimate overall prevalence of diabetes – by definition, they only concern diabetics treated pharmacologically – good agreement is found with respect to trend estimates of both prevalence, incidence, and mortality among diabetics. Pharmacoepidemiologic databases can therefore be a valuable source of data for cost-effective monitoring of developments in the disease burden of diabetes.


Disease Burden Index Date Diabetes Prevalence Define Daily Dose Individual Level Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:




consumed daily doses


defined daily doses


national health and nutrition examination  survey


prescribed daily doses


United Kingdom prospective diabetes study


  1. Bradshaw D, Norman R, Pieterse D, Levitt NS. (2007). South African Comparative Risk Assessment Collaborating Group. S Afr Med J. 97: 700–706.PubMedGoogle Scholar
  2. Chaturvedi N. (2007). Diabetes Res Clin Pract. 76 (Suppl. 1): S3–12.PubMedCrossRefGoogle Scholar
  3. Cowie CC, Rust KF, Byrd-Holt DD, Eberhardt MS, Flegal KM, Engelgau MM, Saydah SH, Williams DE, Geiss LS, Gregg EW. (2006). Diabetes Care. 29: 1263–1268.PubMedCrossRefGoogle Scholar
  4. Dawson KG, Gomes D, Gerstein H, Blanchard JF, Kahler KH. (2002). Diabetes Care. 25: 1303–1307.PubMedCrossRefGoogle Scholar
  5. Duarte-Ramos F, Cabrita J. (2006). Pharmacoepidemiol Drug Saf. 15: 269–274.PubMedCrossRefGoogle Scholar
  6. Evans JMM, Barnett KN, Ogston SA, Morris AD. (2007). Diabetologia. 50: 729–732.PubMedCrossRefGoogle Scholar
  7. Gaist D, Sorensen H, Hallas J. (1997). Dan Med Bull. 44: 445–448.PubMedGoogle Scholar
  8. Glynn RJ, Monane M, Gurwitz JH, Choodnovskiy I, Avorn J. (1999). Am J Epidemiol. 149: 541–549.PubMedGoogle Scholar
  9. Green A, Hauge M, Holm N, Rasch L. (1981). Diabetologia. 20: 468–470.PubMedCrossRefGoogle Scholar
  10. Hallas J. (2005). Pharmacoepidemiol Drug Saf. 14: 455–463.PubMedCrossRefGoogle Scholar
  11. Hallas J, Gaist D, Bjerrum L. (1997). Epidemiology. 8: 666–670.PubMedCrossRefGoogle Scholar
  12. Hallas J, Nissen A. (1994). Eur J Clin Pharmacol. 47: 367–372.PubMedCrossRefGoogle Scholar
  13. Hallas J, Stovring H. (2006). Basic Clin Pharmacol Toxicol. 98: 260–265.PubMedCrossRefGoogle Scholar
  14. Hogan P, Dall T, Nikolov P, Association AD. (2003). Diabetes Care. 26: 917–932.PubMedCrossRefGoogle Scholar
  15. Honeycutt AA, Boyle JP, Broglio KR, Thompson TJ, Hoerger TJ, Geiss LS, Narayan KMV. (2003). Health Care Manag Sci. 6: 155–164.PubMedCrossRefGoogle Scholar
  16. Jagger C, Goyder E, Clarke M, Brouard N, Arthur A. (2003). J Public Health Med. 25: 42–46.PubMedCrossRefGoogle Scholar
  17. Keiding N, Holst C, Green A. (1989). Am J Epidemiol. 130: 588–600.PubMedGoogle Scholar
  18. Khowaja LA, Khuwaja AK, Cosgrove P. (2007). BMC Health Serv Res. 7: 189.PubMedCrossRefGoogle Scholar
  19. Korff MV, Katon W, Lin EHB, Simon G, Ciechanowski P, Ludman E, Oliver M, Rutter C, Young B. (2005). Diabetes care. 28: 1326–1332.CrossRefGoogle Scholar
  20. Köster I, von Ferber L, Ihle P, Schubert I, Hauner H. (2006). Diabetologia. 49: 1498–1504.PubMedCrossRefGoogle Scholar
  21. Lipscombe LL, Hux JE. (2007). Lancet. 369: 750–756.PubMedCrossRefGoogle Scholar
  22. Lipworth L, Friis S, Blot WJ, McLaughlin JK, Mellemkjaer L, Johnsen SP, Nørgaard B, Olsen JH. (2004). Am J Ther. 11: 156–163.PubMedCrossRefGoogle Scholar
  23. Ludman EJ, Katon W, Russo J, Korff MV, Simon G, Ciechanowski P, Lin E, Bush T, Walker E, Young B. (2004). Gen Hosp Psychiatry. 26: 430–436.PubMedCrossRefGoogle Scholar
  24. Mantel-Teeuwisse A, Klungel O, Verschuren W, Porsius A, de Boer A. (2001). J Clin Epidemiol. 54:1181–1186.PubMedCrossRefGoogle Scholar
  25. Narayan KMV, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. (2006). Diabetes Care. 29: 2114–2116.PubMedCrossRefGoogle Scholar
  26. OECD Publishing. (2007). OECD Health Data 2007: Statistics and Indicators for 30 Countries. URL
  27. Papoz L. (1993). Epidemiology. 4: 421–427.PubMedCrossRefGoogle Scholar
  28. Sartor F, Walckiers D. (1995). Am J Epidemiol. 141: 782–787.PubMedGoogle Scholar
  29. Saydah SH, Eberhardt MS, Loria CM, Brancati FL. (2002). Am J Epidemiol. 156: 714–719.PubMedCrossRefGoogle Scholar
  30. Stevenson CR, Critchley JA, Forouhi NG, Roglic G, Williams BG, Dye C, Unwin NC. (2007). Chronic Illn. 3: 228–245.PubMedCrossRefGoogle Scholar
  31. Støvring H. (2007). Pharmacoepidemiol Drug Saf. 16: 681–686.PubMedCrossRefGoogle Scholar
  32. Støvring H, Andersen M, Beck-Nielsen H, Green A, Vach W. (2003). Lancet. 362: 537–538.PubMedCrossRefGoogle Scholar
  33. Støvring H, Andersen M, Beck-Nielsen H, Green A, Vach W. (2007). Popul Health Metr. 5: 2.PubMedCrossRefGoogle Scholar
  34. Støvring H, Vach W. (2005). Stat Med. 24: 3139–3154.PubMedCrossRefGoogle Scholar
  35. Stratton I, Adler A, Neil H, Matthews D, Manley S, Cull C, Hadden D, Turner R, Holman R. (2000). BMJ. 321: 405–412.PubMedCrossRefGoogle Scholar
  36. Strom BL, Carson JL, Morse ML, LeRoy AA. (1985). Clin Pharmacol Ther. 38: 359–364.PubMedCrossRefGoogle Scholar
  37. The WHO Collaborating Centre for Drug Statistics Methodology. (2001). ATC Index with DDDs and Guidelines for ATC Classification and DDD Assignment, Oslo.Google Scholar
  38. UKPDS Study Group. (1991). Diabetologia. 34: 877–890.Google Scholar
  39. Vestergaard P, Rejnmark L, Mosekilde L. (2004). Epilepsia. 45: 1330–1337.PubMedCrossRefGoogle Scholar
  40. Vijan S, Hayward RA, Langa KM. (2004). Health Serv Res. 39: 1653–1669.PubMedCrossRefGoogle Scholar
  41. Walckiers D, der Veken JV, Papoz L, Stroobant A. (1992). Eur J Clin Pharmacol. 43: 613–619.PubMedCrossRefGoogle Scholar
  42. Walley T, Hughes D, Kendall H. (2005). Pharmacoepidemiol Drug Saf. 14: 769–773.PubMedCrossRefGoogle Scholar
  43. Walley T, Mantgani A. (1997). Lancet. 350: 1097–1099.PubMedCrossRefGoogle Scholar
  44. Wild S, Roglic G, Green A, Sicree R, King H. (2004). Diabetes Care. 27: 1047–1053.PubMedCrossRefGoogle Scholar
  45. World Health Organization Department of Noncommunicable Disease Surveillance. (1999). Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications; Part 1: Diagnosis and Classification of Diabetes Mellitus. URL

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • H. Støvring
    • 1
  1. 1.Research Unit for General PracticeUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations