Advertisement

Quality of Life and Tryptophan Degradation

  • D. Fuchs
  • K. Schroecksnadel
  • G. Neurauter
  • R. Bellmann-Weiler
  • M. Ledochowski
  • G. Weiss
Reference work entry

Abstract:

Patients suffering from autoimmune disease, cancer or chronic inflammatory diseases mostly suffer from severe “complications” of their underlying illness, like weight loss, physical inefficiency, immunodeficiency, anemia, chronic fatigue, mood disorders or even depression. All these symptoms can severely impair the quality of life of patients. The percentage of patients with chronic diseases complaining about poor quality of life is high, irrespective of their underlying disease.

Interestingly, most patients suffering from chronic inflammatory disease have a strongly disturbed  tryptophan metabolism. Within cellular immune response the essential amino acid tryptophan is degraded by the enzyme  indoleamine-2,3-dioxygenase (IDO), leading to lowered tryptophan serum/plasma concentrations and increased levels of tryptophan catabolites like kynurenine. Tryptophan is not only necessary for the growth and proliferation of various cells as well as pathogens, it is also the precursor of the important neurotransmitters serotonin (5-hydroxytryptamin) and nicotinamide adenine dinucleotide (NAD). Increased  tryptophan degradation within chronic inflammatory cascades thus leads to a diminished tryptophan availability, which might not only decrease the immunoresponsiveness of patients, but may also influence their mood, physical strength and haematopoiesis.

In fact, immune-mediated tryptophan degradation is supposed to contribute importantly to the development of fatigue, weight loss, and neuropsychiatric disorders. This review provides an overview, how enhanced IDO-activation might contribute to the development of various symptoms impairing the quality of life of patients with chronic disease.

Keywords

Quinolinic Acid Neuropsychiatric Symptom Nicotinamide Adenine Dinucleotide Acute Tryptophan Depletion Tryptophan Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

ACMSA

aminocarboxymuconic semialdehyde

ATP

adenosine triphosphate

GCH

guanine triphosphate cylohydrolase I

HIV

human immunodeficiency virus infection

IDO

indoleamine 2,3-dioxygenase

IFN-γ

 interferon-γ

INDOL 1

indoleamine-pyrrole 2,3-dioxygenase-like 1

Kyn/trp

kynurenine to tryptophan ratio

LPS

lipopolysaccharide

NAD

nicotinamide adenine dinucleotide

TDO

tryptophan pyrrolase

Th1 type immune response

T-helper cell type 1 immune response

TNF-α

tumor necrosis factor-α

5-HT

5-hydroxytryptamin (= serotonin)

1-MT

1-methyl-tryptophan

References

  1. Brandacher G, Margreiter R, Fuchs D. (2007). Curr Drug Metab. 8: 273–282.PubMedCrossRefGoogle Scholar
  2. Brandacher G, Amberger A, Schroecksnadel K, Margreiter R, Fuchs D. (2007). Predictive value of IFN-g induced Indoleamine 2,3-dioxygenase (IDO) expression in cancer patients. Cancer Management in Man.Google Scholar
  3. Brown BR, Baranowski MD, Kulig JW, Stephenson JN, Perry B. (1996). Adolescence. 31: 253–264.PubMedGoogle Scholar
  4. Brown RR, Ozaki Y, Datta SP, Borden EC, Sondel PM, Malone DG. (1991). Adv Exp Med Biol. 294: 425–435.PubMedGoogle Scholar
  5. Bruera E. (1997). BMJ. 315: 1219–1222.PubMedGoogle Scholar
  6. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH. (2003). Biol Psychiatry. 54: 906–914.PubMedCrossRefGoogle Scholar
  7. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. (2008). Nat Rev Neurosci. 9: 46–56.PubMedCrossRefGoogle Scholar
  8. Denz H, Orth B, Weiss G, Herrmann R, Huber P, Wachter H, Fuchs D. (1993). Clin Investig. 71: 37–41.PubMedCrossRefGoogle Scholar
  9. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. (2002). J Exp Med. 196: 459–468.PubMedCrossRefGoogle Scholar
  10. Fuchs D, Moller AA, Reibnegger G, Stockle E, Werner ER, Wachter H. (1990). J Acquir Immune Defic Syndr. 3: 873–876.PubMedGoogle Scholar
  11. Fuchs D, Shearer GM, Boswell RN, Lucey DR, Clerici M, Reibnegger G, Werner ER, Zajac RA, Wachter H. (1991). AIDS. 5: 209–212.PubMedCrossRefGoogle Scholar
  12. Fuchs D, Werner ER, Dierich MP, Wachter H. (1988). Ann Neurol. 24: 289.PubMedCrossRefGoogle Scholar
  13. Grohmann U, Fallarino F, Bianchi R, Vacca C, Orabona C, Belladonna ML, Fioretti MC, Puccetti P. (2003). Adv Exp Med Biol. 527: 47–54.PubMedGoogle Scholar
  14. Holzner B, Kemmler G, Greil R, Kopp M, Zeimet A, Raderer M, Hejna M, Zochbauer S, Krajnik G, Huber H, Fleischhacker WW, Sperner-Unterweger B. (2002). Ann Oncol. 13: 965–973.PubMedCrossRefGoogle Scholar
  15. Huang A, Fuchs D, Widner B, Glover C, Henderson DC, len-Mersh TG. (2002). Br J Cancer. 86: 1691–1696.PubMedCrossRefGoogle Scholar
  16. Iwagaki H, Hizuta A, Uomoto M, Takeuchi Y, Saito S, Tanaka N. (1997). Acta Med Okayama. 51: 233–236.PubMedGoogle Scholar
  17. Kohl C, Sperner-Unterweger B. (2007). Curr Drug Metab. 8: 283–287.PubMedCrossRefGoogle Scholar
  18. Launay JM, Copel L, Callebert J, Corvaia N, Lepage E, Bricaire F, Saal F, Peries J. (1988). J Acquir Immune Defic Syndr. 1: 324–325.PubMedGoogle Scholar
  19. Look MP, Altfeld M, Kreuzer KA, Riezler R, Stabler SP, Allen RH, Sauerbruch T, Rockstroh JK. (2000). AIDS Res Hum Retroviruses. 16: 1215–1221.PubMedCrossRefGoogle Scholar
  20. MacKenzie CR, Heseler K, Muller A, Daubener W. (2007). Curr Drug Metab. 8: 237–244.PubMedCrossRefGoogle Scholar
  21. Maes M, Scharpe S, Meltzer HY, Okayli G, Bosmans E, D’Hondt P, Vanden Bossche BV, Cosyns P. (1994). Psychiatry Res. 54: 143–160.PubMedCrossRefGoogle Scholar
  22. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. (2004). Blood. 103: 4619–4621.PubMedCrossRefGoogle Scholar
  23. Mellor AL, Munn DH. (2004). Nat Rev Immunol. 4: 762–774.PubMedCrossRefGoogle Scholar
  24. Moffett JR, Namboodiri MA. (2003). Immunol Cell Biol 81: 247–265.PubMedCrossRefGoogle Scholar
  25. Moroni F. (1999). Eur J Pharmacol. 375: 87–100.PubMedCrossRefGoogle Scholar
  26. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. (1998). Science. 281: 1191–1193.PubMedCrossRefGoogle Scholar
  27. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. (1999). J Exp Med. 189: 1363–1372.PubMedCrossRefGoogle Scholar
  28. Murray MF. (2007). Curr Drug Metab. 8: 197–200.PubMedCrossRefGoogle Scholar
  29. Neumeister A. (2003). Psychopharmacol Bull. 37: 99–115.PubMedGoogle Scholar
  30. Peters JC. (1991). Adv Exp Med Biol. 294: 345–358.PubMedGoogle Scholar
  31. Ruhe HG, Mason NS, Schene AH. (2007). Mol Psychiatry. 12: 331–359.PubMedCrossRefGoogle Scholar
  32. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM. (2002). J Neuroimmunol. 129: 186–196.PubMedCrossRefGoogle Scholar
  33. Schröcksnadel H, Baier-Bitterlich G, Dapunt O, Wachter H, Fuchs D. (1996). Obstet Gynecol. 88: 47–50.PubMedCrossRefGoogle Scholar
  34. Schroecksnadel K, Fiegl M, Prassl K, Winkler C, Denz HA, Fuchs D. (2007). J Cancer Res Clin Oncol. 133: 477–485.PubMedCrossRefGoogle Scholar
  35. Kurz-Schroecksnadel K, Pircher M, Fiegl M, Weiss G, Denz H, Fuchs D. (2008). Pteridines. 19: 57–58.Google Scholar
  36. Schroecksnadel K, Sarcletti M, Winkler C, Mumelter B, Weiss G, Fuchs D, Kemmler G, Zangerle R. (2008). Brain Behav Immun Epub ahead of print.Google Scholar
  37. Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D. (2006). Clin Chim Acta. 364: 82–90.PubMedCrossRefGoogle Scholar
  38. Sharp K, Brindle PM, Brown MW, Turner GM. (1993). Br J Obstet Gynaecol. 100: 209–215.PubMedCrossRefGoogle Scholar
  39. Suarez S, Baril L, Stankoff B, Khellaf M, Dubois B, Lubetzki C, Bricaire F, Hauw JJ. (2001). AIDS. 15: 195–200.PubMedCrossRefGoogle Scholar
  40. Takikawa O, Yoshida R, Kido R, Hayaishi O. (1986). J Biol Chem. 261: 3648–3653.PubMedGoogle Scholar
  41. Taylor MW, Feng GS. (1991). FASEB J. 5: 2516–2522.PubMedGoogle Scholar
  42. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G. (2002). J Exp Med. 196: 447–457.PubMedCrossRefGoogle Scholar
  43. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. (2003). Nat Med. 9: 1269–1274.PubMedCrossRefGoogle Scholar
  44. von Bubnoff BD, Matz H, Frahnert C, Rao ML, Hanau D, de la SH, Bieber T. (2002). J Immunol. 169: 1810–1816.PubMedGoogle Scholar
  45. Weiss G, Diez-Ruiz A, Murr C, Theurl I, Fuchs D. (2002). Pteridines. 13: 139–143.Google Scholar
  46. Weiss G, Goodnough LT. (2005). N Engl J Med. 352: 1011–1023.PubMedCrossRefGoogle Scholar
  47. Weiss G, Schroecksnadel K, Mattle V, Winkler C, Konwalinka G, Fuchs D. (2004). Eur. J. Haematol. 72: 130–134.PubMedCrossRefGoogle Scholar
  48. Werner ER, Hirsch-Kauffmann M, Fuchs D, Hausen A, Reibnegger G, Schweiger M, Wachter H. (1987). Biol Chem. 368: 1407–1412.Google Scholar
  49. Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H. (1989). Biochem J. 262: 861–866.PubMedGoogle Scholar
  50. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. (1997). Clin Chem. 43: 2424–2426.PubMedGoogle Scholar
  51. Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D. (2003). Curr Med Chem. 10: 1581–1591.PubMedCrossRefGoogle Scholar
  52. Zangerle R, Reibnegger G, Wachter H, Fuchs D. (1993). AIDS. 7: 175–181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • D. Fuchs
    • 1
  • K. Schroecksnadel
    • 2
  • G. Neurauter
    • 1
  • R. Bellmann-Weiler
    • 2
  • M. Ledochowski
    • 3
  • G. Weiss
    • 2
  1. 1.Division of Biological Chemistry, BiocenterInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Department of Internal MedicineInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Division of Nutrition MedicineInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations