Advertisement

Epigenetics and its Applications to a Revised Progression Model of Pancreatic Cancer

  • Gwen Lomberk
  • Raul Urrutia
Reference work entry

Abstract:

Defined as heritable changes in gene expression, which are not due to any alteration in the DNA sequence, epigenetic pathways are coming to the forefront of research in disease, and in particular, cancer. In fact, these pathways are altered far more prevalently in cancer than genetic alterations and most importantly, can be reversible, lending themselves as attractive therapeutic targets.

This chapter will cover the basic aspects of transcriptional gene regulation, epigenetics and chromatin dynamics and then discuss the intricacies of its application to pancreatic cancer biology and potential therapeutics. In addition, we propose a revised model for better understanding pancreatic cancer to expand the highly provocative and productive “mutation centric” progression model, as defined by Hruban and colleagues, into a new model that formally includes chromatin-induced and miRNA-induced epigenetic changes, as well as other alterations that could be caused by changes in nuclear shape. We are optimistic that this model may serve as a compass for further studies aimed at illuminating the field of pancreatic cancer biology, diagnosis, therapeutics, and chemoprevention, in a similar, fruitful manner as the original model.

Keywords

Pancreatic Cancer Chronic Pancreatitis Pancreatic Cancer Cell Line Histone Variant Nuclear Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work in the author’s laboratory (R.U.) is supported by funding from the National Institutes of Health DK 52913 and Mayo Clinic Pancreatic SPORE (P50 CA102701).

References

  1. 1.
    Hruban RH, Goggins M, Parsons J, Kern SE: Progression model for pancreatic cancer. Clin Cancer Res 2000;6:2969–2972.PubMedGoogle Scholar
  2. 2.
    Kuhn TS: The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1996.Google Scholar
  3. 3.
    Jacob F, Monod J: Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961;3:318–356.PubMedCrossRefGoogle Scholar
  4. 4.
    McClure WR: Mechanism and control of transcription initiation in prokaryotes. Ann Rev Biochem 1985;54:171–204.PubMedCrossRefGoogle Scholar
  5. 5.
    Ebright RH: RNA polymerase: structural similarities between bacterial rna polymerase and eukaryotic RNA polymerase II. J Mol Biol 2000;304:687–698.PubMedCrossRefGoogle Scholar
  6. 6.
    Roeder RG, Rutter WJ: Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969;224:234–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Chambon P: Eukaryotic nuclear RNA polymerases. Ann Rev Biochem 1975;44:613–638.PubMedCrossRefGoogle Scholar
  8. 8.
    Roeder RG: Eukaryotic nuclear RNA polymerases. In M RNA Polymerase. Losick R, Chamberlin (eds.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1976, pp. 285–329.Google Scholar
  9. 9.
    Weil PA, Luse DS, Segall J, Roeder RG: Selective and accurate initiation of transcription at the ad2 major late promotor in a soluble system dependent on purified rna polymerase II and DNA. Cell 1979;18:469–484.PubMedCrossRefGoogle Scholar
  10. 10.
    Hori R, Carey M: The role of activators in assembly of RNA polymerase II transcription complexes. Curr Opin Genet Dev 1994;4:236–244.PubMedCrossRefGoogle Scholar
  11. 11.
    Koleske AJ, Young RA: The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem Sci 1995;20:113–116.PubMedCrossRefGoogle Scholar
  12. 12.
    Orphanides G, Lagrange T, Reinberg D: The general transcription factors of RNA polymerase II. Genes Dev 1996;10:2657–2683.PubMedCrossRefGoogle Scholar
  13. 13.
    Li Y, Flanagan PM, Tschochner H, Kornberg RD: RNA polymerase II initiation factor interactions and transcription start site selection. Science 1994;263:805–807.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinto I, Ware DE, Hampsey M: The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 1992;68:977–988.PubMedCrossRefGoogle Scholar
  15. 15.
    Myers LC, Kornberg RD: Mediator of transcriptional regulation. Ann Rev Biochem 2000;69:729–749.PubMedCrossRefGoogle Scholar
  16. 16.
    Istrail S, Davidson EH: Logic functions of the genomic cis-regulatory code. In Proceedings of the National Academy of Sciences of the United States of America, 2005, vol. 102, pp. 4954–4959.Google Scholar
  17. 17.
    Cook T, Gebelein B, Mesa K, Mladek A, Urrutia R: Molecular cloning and characterization of tieg2 reveals a new subfamily of transforming growth factor-beta -inducible sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem 1998;273:25929–25936.PubMedCrossRefGoogle Scholar
  18. 18.
    Rose SD, Swift GH, Peyton MJ, Hammer RE, MacDonald RJ: The role of PTF1-P48 in pancreatic Acinar gene expression. J Biol Chem 2001;276:44018–44026.PubMedCrossRefGoogle Scholar
  19. 19.
    Jan J: Gene regulatory factors in pancreatic development. Dev Dyn 2004;229:176–200.CrossRefGoogle Scholar
  20. 20.
    Jones N: Structure and function of transcription factors. Semin Cancer Biol 1990;1:5–17.PubMedGoogle Scholar
  21. 21.
    Mitchell PJ, Tjian R: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989;245:371–378.PubMedCrossRefGoogle Scholar
  22. 22.
    Kadonaga JT: Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 2004;116:247–257.PubMedCrossRefGoogle Scholar
  23. 23.
    Glozak MA, Seto E: Histone deacetylases and cancer. Oncogene 2007;26:5420–5432.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee MJ, Kim YS, Kummar S, Giaccone G, Trepel JB: Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 2008;20:639–649.PubMedCrossRefGoogle Scholar
  25. 25.
    Pazin MJ, Kadonaga JT: What’s up and down with histone deacetylation and transcription? Cell 1997;89:325–328.PubMedCrossRefGoogle Scholar
  26. 26.
    Sterner DE, Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64:435–459.PubMedCrossRefGoogle Scholar
  27. 27.
    Kornberg RD: Chromatin structure: a repeating unit of histones and DNA. Science 1974;184:868–871.PubMedCrossRefGoogle Scholar
  28. 28.
    Kornberg RD, Lorch Y: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285–294.PubMedCrossRefGoogle Scholar
  29. 29.
    Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell 2007;128:707–719.PubMedCrossRefGoogle Scholar
  30. 30.
    Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000;403:41–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Rizzo PJ: Basic chromosomal proteins in lower eukaryotes: relevance to the evolution and function of histones. J Mol Evol 1976;8:79–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Luger K, Richmond TJ: The histone tails of the nucleosome. Curr Opin Gen Dev 1998;8:140–146.CrossRefGoogle Scholar
  33. 33.
    Kustatscher G, Ladurner AG: Modular paths to ‘decoding’ and ‘wiping’ histone lysine methylation. Curr Opin Chem Biol 2007;11:628–635.PubMedCrossRefGoogle Scholar
  34. 34.
    Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G: Genome regulation by polycomb and trithorax proteins. Cell 2007;128:735–745.PubMedCrossRefGoogle Scholar
  35. 35.
    Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R: Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006;8:407–415.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang R, Chen W, Adams PD: Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007;27:2343–2358.PubMedCrossRefGoogle Scholar
  37. 37.
    Lusser A, Kadonaga JT: Chromatin remodeling by ATP-dependent molecular machines. Bioessays 2003;25:1192–1200.PubMedCrossRefGoogle Scholar
  38. 38.
    Kennison JA: The polycomb and trithorax group proteins of drosophila: trans-regulators of homeotic gene function. Ann Rev Gen 1995;29:289–303.CrossRefGoogle Scholar
  39. 39.
    Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW: Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 1994;14:2225–2234.PubMedGoogle Scholar
  40. 40.
    Chiba H, Muramatsu M, Nomoto A, Kato H: Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 1994;22:1815–1820.PubMedCrossRefGoogle Scholar
  41. 41.
    Decristofaro MF: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 2001;186:136–145.PubMedCrossRefGoogle Scholar
  42. 42.
    Wong AK: BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 2000;60:6171–6177.PubMedGoogle Scholar
  43. 43.
    Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG: Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006;8:532–538.PubMedCrossRefGoogle Scholar
  44. 44.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006;125:315–326.PubMedCrossRefGoogle Scholar
  45. 45.
    Park Y-J, Luger K: Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol 2008;18:282–289.PubMedCrossRefGoogle Scholar
  46. 46.
    Loyola A, Almouzni G: Marking histone H3 variants: how, when and why? Trends Biochem Sci 2007;32:425–433.PubMedCrossRefGoogle Scholar
  47. 47.
    Hake SB, Allis CD: Histone H3 variants and their potential role in indexing mammalian genomes: The ‘H3 barcode hypothesis’. Proc Natl Acad Sci USA 2006;103:6428–6435.PubMedCrossRefGoogle Scholar
  48. 48.
    Heard E, Bickmore W: The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 2007;19:311–316.PubMedCrossRefGoogle Scholar
  49. 49.
    Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith ACM, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins MDFS, Nabel EG, Cannon RO III, Gahl WA, Introne WJ: Phenotype and Course of Hutchinson-Gilford progeria syndrome. N Engl J Med 2008;358:592–604.PubMedCrossRefGoogle Scholar
  50. 50.
    Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M: Review: nuclear lamins – structural proteins with fundamental functions. J Struct Biol 2000;129:313–323.PubMedCrossRefGoogle Scholar
  51. 51.
    Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001;25:579–586.PubMedCrossRefGoogle Scholar
  52. 52.
    Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990;61:759–767.PubMedCrossRefGoogle Scholar
  53. 53.
    Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M: Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003;63:4158–4166.PubMedGoogle Scholar
  54. 54.
    Ueki T, Toyota M, Skinner H, Walter KM, Yeo CJ, Issa J-PJ, Hruban RH, Goggins M: Identification and characterization of differentially methylated cpg islands in pancreatic carcinoma. Cancer Res 2001;61:8540–8546.PubMedGoogle Scholar
  55. 55.
    Ueki T, Toyota M, Sohn T, Yeo CJ, Issa J-PJ, Hruban RH, Goggins M: Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 2000;60:1835–1839.PubMedGoogle Scholar
  56. 56.
    Frese KK, Tuveson DA: Maximizing mouse cancer models. Nat Rev Cancer 2007;7:654–658.CrossRefGoogle Scholar
  57. 57.
    Esteller M: Epigenetics in cancer. N Engl J Med 2008;358:1148–1159.PubMedCrossRefGoogle Scholar
  58. 58.
    Singh M, Maitra A: Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology 2007;7:9–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, Smyrk TC, Chari ST, Urrutia R, Billadeau DD: Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 2005;7:39–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Fernandez-Zapico M, Molina J, Ahlquist D, Urrutia R: Functional characterization of KLF11, a novel TGFb-regulated tumor suppressor for pancreatic cancer. Pancreatology 2003;3:429–441.CrossRefGoogle Scholar
  61. 61.
    Gebhard C, Schwarzfischer L, Pham T-H, Schilling E, Klug M, Andreesen R, Rehli M: Genome-wide profiling of CpG methylation identifies novel targets of Aberrant Hypermethylation in Myeloid Leukemia. Cancer Res 2006;66:6118–6128.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosty C, Geradts J, Sato N, Wilentz RE, Roberts H, Sohn T, Cameron JL, Yeo CJ, Hruban RH, Goggins M: p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol 2003;27:1495–1501.PubMedCrossRefGoogle Scholar
  63. 63.
    Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, Hruban RH, Goggins M: Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 2003;63:3735–3742.PubMedGoogle Scholar
  64. 64.
    Allis C, Jenuwein T, Reinberg D, Capparros ML, (eds.): Epigenetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2007.Google Scholar
  65. 65.
    Privalsky M (ed.): Transcriptional corepressors: mediators of eukaryotic gene expression. New York: Springer, 2001.Google Scholar
  66. 66.
    Cress W, Seto E: Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 2000;184:1–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Blasco F, Peñuelas S, Cascalló M, Hernández JL, Alemany C, Masa M, Calbó J, Soler M, Nicolás M, Pérez-Torras S, Gómez A, Tarrasón G, Noé V, Mazo A, Ciudad CJ, Piulats J: Expression profiles of a human pancreatic cancer cell line upon induction of apoptosis search for modulators in cancer therapy. Oncology 2004;67:277–290.PubMedCrossRefGoogle Scholar
  68. 68.
    Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard J-P, Lafontaine J, Payan M, Dahan L, Pirrò N, Seitz J, Mas E, Lombardo D, Ouaissi A: High histone deacetylase 7 (hdac7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 2008;15:2318–2328.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhao S, Venkatasubbarao K, Li S, Freeman JW: Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor {beta} type II receptor expression in human pancreatic cancer cells. Cancer Res 2003;63:2624–2630.PubMedGoogle Scholar
  70. 70.
    Truty MJ, Lomberk G, Fernandez-Zapico ME, Urrutia R: Silencing of the TGFbeta receptor II by kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGF beta signaling. J Biol Chem 2008;284:6291–6300.Google Scholar
  71. 71.
    Lomberk G, Zhang J, Truty M, Urrutia R: A new molecular model for regulating the tgf[beta] receptor ii promoter in pancreatic cells. Pancreas 2008;36:222–223.CrossRefGoogle Scholar
  72. 72.
    Breiling A, Sessa L, Orlando V, Kwang WJ: Biology of polycomb and trithorax group proteins. Int Rev Cytology 2007;258:83–136.CrossRefGoogle Scholar
  73. 73.
    Ringrose L: Polycomb comes of age: genome-wide profiling of target sites. Curr Opin Cell Biol 2007;19:290–297.PubMedCrossRefGoogle Scholar
  74. 74.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y: Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002;298:1039–1043.PubMedCrossRefGoogle Scholar
  75. 75.
    Grzenda AL, Lomberk G, Urrutia R: Different EZH2 isoforms are expressed in pancreatic cells: evidence for a polycomb-mediated subcode within the context of the histone code. Pancreas 2007;35:404.CrossRefGoogle Scholar
  76. 76.
    Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay N, Albarracin C, Yu D, Abbruzzese J, Mills G, Bast R, Hortobagyi G, Hung M: Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 2008;47:701–706.PubMedCrossRefGoogle Scholar
  77. 77.
    Ougolkov AV, Bilim VN, Billadeau DD: Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res 2008;14:6790–6796.PubMedCrossRefGoogle Scholar
  78. 78.
    Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y: pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev 2007;21:49–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006;439:871–874.PubMedCrossRefGoogle Scholar
  80. 80.
    Lomberk G, Wallrath L, Urrutia R: The heterochromatin protein 1 family. Genome Biol 2006;7:228.PubMedCrossRefGoogle Scholar
  81. 81.
    Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC, Robertson KD, Fuks F, Esteller M: Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 2004;279:37175–37184.PubMedCrossRefGoogle Scholar
  82. 82.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415:436–442.PubMedCrossRefGoogle Scholar
  83. 83.
    Kirschmann DA, Lininger RA, Gardner LMG, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJC: Down-regulation of HP1Hs{{alpha}} expression is associated with the metastatic phenotype in breast cancer. Cancer Res 2000;60:3359–3363.PubMedGoogle Scholar
  84. 84.
    Ruginis T, Taglia L, Matusiak D, Lee B-S, Benya RV: Consequence of gastrin-releasing peptide receptor activation in a human colon cancer cell line: a proteomic approach. J Proteome Res 2006;5:1460–1468.PubMedCrossRefGoogle Scholar
  85. 85.
    Popova EY, Claxton DF, Lukasova E, Bird PI, Grigoryev SA: Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood. Exp Hematol 2006;34:453–462.PubMedCrossRefGoogle Scholar
  86. 86.
    Lukasova E, Koristek Z, Falk M, Kozubek S, Grigoryev S, Kozubek M, Ondrej V, Kroupova I: Methylation of histones in myeloid leukemias as a potential marker of granulocyte abnormalities. J Leukoc Biol 2005;77:100–111.PubMedGoogle Scholar
  87. 87.
    Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman J-O, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, Aherne W, Banerji U, Judson I, Sharp S, Powers M, deBilly E, Salmons J, Walton M, Burlingame A, Waterfield M, Workman P: Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2007;67:3239–3253.PubMedCrossRefGoogle Scholar
  88. 88.
    Wasenius V-M, Hemmer S, Kettunen E, Knuutila S, Franssila K, Joensuu H: Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: A cDNA and tissue microarray study. Clin Cancer Res 2003;9:68–75.PubMedGoogle Scholar
  89. 89.
    Plate JM, Shott S, Harris JE: Immunoregulation in pancreatic cancer patients. Cancer Immunol Immunother 1999;48:270–279.PubMedCrossRefGoogle Scholar
  90. 90.
    Qu CF, Li Y, Song YJ, Rizvi SMA, Raja C, Zhang D, Samra J, Smith R, Perkins AC, Apostolidis C, Allen BJ: MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by 213Bi-C595 radioimmunoconjugate. Br J Cancer 2004;91:2086–2093.PubMedCrossRefGoogle Scholar
  91. 91.
    Gronborg M, Bunkenborg J, Kristiansen TZ, Jensen ON, Yeo CJ, Hruban RH, Maitra A, Goggins MG, Pandey A: Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 2004;3:1042–1055.PubMedCrossRefGoogle Scholar
  92. 92.
    Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR: Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer 1994;57:198–203.PubMedCrossRefGoogle Scholar
  93. 93.
    Masaki Y, Oka M, Ogura Y, Ueno T, Nishihara K, Tangoku A, Takahashi M, Yamamoto M, Irimura T: Sialylated MUC1 mucin expression in normal pancreas, benign pancreatic lesions, and pancreatic ductal adenocarcinoma. Hepatogastroenterology 1999;46:2240–2245.PubMedGoogle Scholar
  94. 94.
    Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G: Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 2009;182:216–224.PubMedCrossRefGoogle Scholar
  95. 95.
    Yamada N, Nishida Y, Tsutsumida H, Hamada T, Goto M, Higashi M, Nomoto M, Yonezawa S: MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res 2008;68:2708–2716.PubMedCrossRefGoogle Scholar
  96. 96.
    Gazzar ME, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE: G9a and HP1 couple histone and DNA methylation to TNF{alpha} transcription silencing during endotoxin tolerance. J Biol Chem 2008;283:32198–32208.PubMedCrossRefGoogle Scholar
  97. 97.
    Smallwood A, Estève P-O, Pradhan S, Carey M: Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007;21:1169–1178.PubMedCrossRefGoogle Scholar
  98. 98.
    Moss TJ, Wallrath LL: Connections between epigenetic gene silencing and human disease. Mut Res 2007;618:163–174.CrossRefGoogle Scholar
  99. 99.
    Lomberk G, Urrutia R: The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J 2005;392:1–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–233.PubMedCrossRefGoogle Scholar
  101. 101.
    Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008;9:102–114.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee E, Gusev Y, Jiang J, Nuovo G, Lerner M, Frankel W, Morgan D, Postier R, Brackett D, Schmittgen T: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007;120:1046–1054.PubMedCrossRefGoogle Scholar
  103. 103.
    Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007;26:4442–4452.PubMedCrossRefGoogle Scholar
  104. 104.
    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu C-G, Bhatt D, Taccioli C, Croce CM: MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007;297:1901–1908.PubMedCrossRefGoogle Scholar
  105. 105.
    Griffiths EA, Gore SD: DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 2008;45:23–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Mund C, Brueckner B, Lyko F: Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics 2006;1:7–13.PubMedCrossRefGoogle Scholar
  107. 107.
    Ghoshal K, Bai S: DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc) 2007;43:395–422.CrossRefGoogle Scholar
  108. 108.
    Berger SL: Histone modifications in transcriptional regulation. Curr Opin Gen Dev 2002;12:142–148.CrossRefGoogle Scholar
  109. 109.
    Hildmann C, Riester D, Schwienhorst A: Histone deacetylases – an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 2007;75:487–497.PubMedCrossRefGoogle Scholar
  110. 110.
    Bruserud O, Stapnes C, Ersvaer E, Gjertsen BT, Ryningen A: Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Curr Pharm Biotechnol 2007;8:388–400.PubMedCrossRefGoogle Scholar
  111. 111.
    Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK: Gene expression profiling of multiple histone deacetylase (hdac) inhibitors: defining a common gene set produced by hdac inhibition in t24 and mda carcinoma cell lines. Mol Cancer Ther 2003;2:151–163.PubMedGoogle Scholar
  112. 112.
    Pan LN, Lu J, Huang B: HDAC inhibitors: a potential new category of anti-tumor agents. Cell Mol Immunol 2007;4:337–343.PubMedGoogle Scholar
  113. 113.
    Ouaissi M, Cabral S, Tavares J, da Silva AC, Daude FM, Mas E, Bernard J, Sastre B, Lombardo D, Ouaissi A: Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors. Cancer Biol Ther 2008;7:523–531.PubMedGoogle Scholar
  114. 114.
    Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, Bonora A, Piacentini P, Budillon A, Caraglia M, Scarpa A, Palmieri M: Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta 2007;1773:1095–1106.PubMedCrossRefGoogle Scholar
  115. 115.
    Singh EK, Ravula S, Pan C-M, Pan P-S, Vasko RC, Lapera SA, Weerasinghe SVW, Pflum MKH, McAlpine SR: Synthesis and biological evaluation of histone deacetylase inhibitors that are based on FR235222: a cyclic tetrapeptide scaffold. Bioorg Med Chem Lett 2008;18:2549–2554.PubMedCrossRefGoogle Scholar
  116. 116.
    Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro MiguelL, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T: Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007;25:473–481.PubMedCrossRefGoogle Scholar
  117. 117.
    Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee P, Karuturi R, Tan P, Liu E, Yu Q: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007;21:1050–1063.PubMedCrossRefGoogle Scholar
  118. 118.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn N-S, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063–6071.PubMedCrossRefGoogle Scholar
  119. 119.
    Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, Bolivar J, Gutierrez-Avino FJ,Dominguez M: Epigenetic silencers and notch collaborate to promote malignant tumours by Rb silencing. Nature 2006;439:430–436.PubMedCrossRefGoogle Scholar
  120. 120.
    Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y: Integration of Estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 2007;27:5105–5119.PubMedCrossRefGoogle Scholar
  121. 121.
    Lomberk G, Mathison AJ, Grzenda A, Urrutia R: The sunset of somatic genetics and the dawn of epigenetics: a new frontier in pancreatic cancer research. Curr Opin Gastroenterol 2008;24:597–602.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Gwen Lomberk
    • 1
  • Raul Urrutia
    • 1
  1. 1.Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine and Mayo Clinic Cancer CenterMayo ClinicRochesterUSA

Personalised recommendations