Pancreatic Cancer pp 1203-1235 | Cite as

Inherited Genetics of Pancreatic Cancer and Secondary Screening

  • William Greenhalf
  • John Neoptolemos
Reference work entry


The process of cancer screening starts with a large population that has many more individuals who are free of cancer than there are people who have occult disease. Then by a process of risk stratification low-risk individuals are removed until a point is reached where the majority of the population (the end population) has cancer. Ideally at the end point of this process testing becomes diagnostic, but in all cases at the end point positive test results must result in an offer of treatment. In the case of pancreatic cancer, curative treatment must include surgical resection of all or part of the pancreas, a process that involves considerable morbidity. Screening must therefore give an end population where the benefits of early treatment for those with cancer outweigh the harm done to false positive individuals who will be offered unnecessary surgery. Screening can be divided into primary and secondary, primary screening being observational and secondary involving active testing. In reality there is considerable overlap and a multidisciplinary team needs to consider the entire process when deciding whether screening is justified. In the case of pancreatic cancer this requires additional quantitative as well as qualitative data on each phase of the screening process; this can only be obtained from pilot screening studies. Such studies have been initiated and are generating data on the nature of inherited predisposition and the early stages of cancer development. It is already apparent that the specificity and sensitivity of secondary screening tests need to be improved. In this chapter, the preliminary evidence from pioneering screening studies will be considered. On the basis of this there will be a discussion of which participants should be recruited into future pilot studies and how biomarkers may be combined with imaging to reduce the number of missed cancers and premature surgical interventions.


Pancreatic Cancer Chronic Pancreatitis Promoter Methylation Pancreatic Juice Pancreatic Cancer Patient 


  1. 1.
    Shimizu Y, Yasui K, Matsueda K, et al.: Small carcinoma of the pancreas is curable: new computed tomography finding, pathological study and postoperative results from a single institute. J Gastroenterol Hepatol 2005;20:1591–1594.PubMedCrossRefGoogle Scholar
  2. 2.
    Cress RD, Yin D, Clarke L, et al.: Survival among patients with adenocarcinoma of the pancreas: a population-based study (United States). Cancer Causes Control 2006;17:403–409.PubMedCrossRefGoogle Scholar
  3. 3.
    Neoptolemos JP, Stocken DD, Friess H, et al.: A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004;350:1200–1210.PubMedCrossRefGoogle Scholar
  4. 4.
    Pelaez-Luna M, Takahashi N, Fletcher JG, et al.: Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am J Gastroenterol 2007;102:2157–2163.PubMedCrossRefGoogle Scholar
  5. 5.
    Helmstaedter L, Riemann JF: Pancreatic cancer-EUS and early diagnosis. Langenbecks Arch Surg 2008;393:923–927.PubMedCrossRefGoogle Scholar
  6. 6.
    Luo J, Adami HO, Reilly M, et al.: Interpreting trends of pancreatic cancer incidence and mortality: a nation-wide study in Sweden (1960–2003). Cancer Causes Control 2008;19:89–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Alexakis N, Halloran C, Raraty M, et al.: Current standards of surgery for pancreatic cancer. Br J Surg 2004;91:1410–1427.PubMedCrossRefGoogle Scholar
  8. 8.
    Brand RE, Lerch MM, Rubinstein WS, et al.: Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 2007;56:1460–1469.PubMedCrossRefGoogle Scholar
  9. 9.
    Howes N, Lerch MM, Greenhalf W, et al.: Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004;2:252–261.PubMedCrossRefGoogle Scholar
  10. 10.
    Algul H, Treiber M, Lesina M, et al.: Mechanisms of disease: chronic inflammation and cancer in the pancreas – a potential role for pancreatic stellate cells? Nat Clin Pract 2007;4:454–462.Google Scholar
  11. 11.
    Latchford A, Greenhalf W, Vitone LJ, et al.: Peutz-Jeghers syndrome and screening for pancreatic cancer. Br J Surg 2006;93:1446–1455.PubMedCrossRefGoogle Scholar
  12. 12.
    Hahn SA, Greenhalf B, Ellis I, et al.: BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003;95:214–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Schutte M, Hruban RH, Geradts J, et al.: Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 1997;57:3126–3130.PubMedGoogle Scholar
  14. 14.
    Al-Sukhni W, Rothenmund H, Eppel Borgida A, et al.: Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet 2008;124:271–278.PubMedCrossRefGoogle Scholar
  15. 15.
    Tersmette AC, Petersen GM, Offerhaus GJ, et al.: Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 2001;7:738–744.PubMedGoogle Scholar
  16. 16.
    Del Chiaro M, Zerbi A, Falconi M, et al.: Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology 2007;7:459–469.PubMedCrossRefGoogle Scholar
  17. 17.
    Greenhalf W, Vitone LJ, Neoptolemos J: Familial Pancreatic Cancer. In: The Pancreas: An Integrated Textbook of Basic Science, Medicine and Surgery. Beger, H-G Buchler, M Kozarek, R et al.: Oxford: Blackwell 2008, pp. 591–600.Google Scholar
  18. 18.
    McFaul C, Greenhalf W, Earl J, et al.: Anticipation in familial pancreatic cancer. Gut 2006;55:252–258.PubMedCrossRefGoogle Scholar
  19. 19.
    Ekbom A, Hunter D: Pancreatic cancer. In Adami, H Hunter, D Trichopoulos, (eds.). D Textbook of Cancer Epidemiology. New York: Oxford University Press 2002, pp. 233–247.Google Scholar
  20. 20.
    Fuchs CS, Colditz GA, Stampfer MJ, et al.: A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med 1996;156:2255–2260.PubMedCrossRefGoogle Scholar
  21. 21.
    Hassan MM, Bondy ML, Wolff RA, et al.: Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol 2007;102:2696–2707.PubMedCrossRefGoogle Scholar
  22. 22.
    Rulyak SJ, Lowenfels AB, Maisonneuve P, et al.: Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 2003;124:1292–1299.PubMedCrossRefGoogle Scholar
  23. 23.
    Lowenfels AB, Maisonneuve P, Whitcomb DC, et al.: Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 2001;286:169–170.PubMedCrossRefGoogle Scholar
  24. 24.
    Rebours V, Boutron-Ruault MC, Schnee M, et al.: Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol 2008;103:111–119.PubMedGoogle Scholar
  25. 25.
    Chen J, Killary AM, Sen S, et al.: Polymorphisms of p21 and p27 jointly contribute to an earlier age at diagnosis of pancreatic cancer. Cancer Lett Epub 2008 August ahead of print.Google Scholar
  26. 26.
    Chen J, Anderson M, Misek DE, et al.: Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 2007;1162:117–125.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones R, Latinovic R, Charlton J, et al.: Alarm symptoms in early diagnosis of cancer in primary care: cohort study using General Practice Research Database. BMJ 2007;334:1040.PubMedCrossRefGoogle Scholar
  28. 28.
    Greenhalf W, Neoptolemos JP: Increasing survival rates of patients with pancreatic cancer by earlier identification. Nat Clin Pract Oncol 2006;3:346–347.PubMedCrossRefGoogle Scholar
  29. 29.
    Chari ST, Leibson CL, Rabe KG, et al.: Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 2008;134:95–101.PubMedCrossRefGoogle Scholar
  30. 30.
    Pannala R, Leirness JB, Bamlet WR, et al.: Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 2008;134:981–987.PubMedCrossRefGoogle Scholar
  31. 31.
    Jemal A, Siegel R, Ward E, et al.: Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Klein AP, Beaty TH, Bailey-Wilson JE, et al.: Evidence for a major gene influencing risk of pancreatic cancer. Genet Epidemiol 2002;23:133–149.PubMedCrossRefGoogle Scholar
  33. 33.
    Fernandez E, La Vecchia C, D'Avanzo B, et al.: Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev 1994;3:209–212.PubMedGoogle Scholar
  34. 34.
    Goldstein AM, Fraser MC, Struewing JP, et al.: Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 1995;333:970–974.PubMedCrossRefGoogle Scholar
  35. 35.
    Kalra MK, Maher MM, Mueller PR, et al.: State-of-the-art imaging of pancreatic neoplasms. Br J Radiol 2003;76:857–865.PubMedCrossRefGoogle Scholar
  36. 36.
    Harewood GC, Wiersema LM, Halling AC, et al.: Influence of EUS training and pathology interpretation on accuracy of EUS-guided fine needle aspiration of pancreatic masses. Gastrointestinal Endosc 2002;55:669–673.CrossRefGoogle Scholar
  37. 37.
    Hruban RH, Takaori K, Klimstra DS, et al.: An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2004;28:977–987.PubMedCrossRefGoogle Scholar
  38. 38.
    Canto MI, Goggins M, Yeo CJ, et al.: Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol 2004;2:606–621.PubMedCrossRefGoogle Scholar
  39. 39.
    Barthet M, Portal I, Boujaoude J, et al.: Endoscopic ultrasonographic diagnosis of pancreatic cancer complicating chronic pancreatitis. Endoscopy 1996;28:487–491.PubMedCrossRefGoogle Scholar
  40. 40.
    Varadarajulu S, Tamhane A, Eloubeidi MA: Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointestinal Endosc 2005;62:728–736; quiz 51, 53.CrossRefGoogle Scholar
  41. 41.
    Gangi S, Fletcher JG, Nathan MA, et al.: Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol 2004;182:897–903.PubMedGoogle Scholar
  42. 42.
    Saisho H, Yamaguchi T: Diagnostic imaging for pancreatic cancer: computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas 2004;28:273–278.PubMedCrossRefGoogle Scholar
  43. 43.
    Semelka RC, Armao DM, Elias J Jr., et al.: Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging 2007;25:900–909.PubMedCrossRefGoogle Scholar
  44. 44.
    Diehl SJ, Lehmann KJ, Gaa J, et al.: MR imaging of pancreatic lesions. Comparison of manganese-DPDP and gadolinium chelate. Invest Radiol 1999;34:589–595.PubMedCrossRefGoogle Scholar
  45. 45.
    Rose DM, Delbeke D, Beauchamp RD, et al.: 18Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg 1999;229:729–737; discussion 37–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Friess H, Langhans J, Ebert M, et al.: Diagnosis of pancreatic cancer by 2 [18F]-fluoro-2-deoxy-D-glucose positron emission tomography. Gut 1995;36:771–777.PubMedCrossRefGoogle Scholar
  47. 47.
    Baiocchi GL, Portolani N, Bertagna F, et al.: Possible additional value of 18FDG-PET in managing pancreas intraductal papillary mucinous neoplasms: preliminary results. J Exp Clin Cancer Res 2008;27:10.PubMedCrossRefGoogle Scholar
  48. 48.
    Sperti C, Bissoli S, Pasquali C, et al.: 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 2007;246:932–937; discussion 7–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Diederichs CG, Staib L, Glatting G, et al.: FDG PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 1998;39:1030–1033.PubMedGoogle Scholar
  50. 50.
    Yan L, McFaul C, Howes N, et al.: Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology 2005;128:2124–2130.PubMedCrossRefGoogle Scholar
  51. 51.
    Cheng CL, Sherman S, Watkins JL, et al.: Risk factors for post-ERCP pancreatitis: a prospective multicenter study. Am J Gastroenterol 2006;101:139–147.PubMedCrossRefGoogle Scholar
  52. 52.
    Williams EJ, Taylor S, Fairclough P, et al.: Are we meeting the standards set for endoscopy? Results of a large-scale prospective survey of endoscopic retrograde cholangio-pancreatograph practice. Gut 2007;56:821–829.PubMedCrossRefGoogle Scholar
  53. 53.
    Riker A, Libutti SK, Bartlett DL: Advances in the early detection, diagnosis, and staging of pancreatic cancer. Surg Oncol 1997;6:157–169.PubMedCrossRefGoogle Scholar
  54. 54.
    Satake K, Takeuchi T, Homma T, et al.: CA19–9 as a screening and diagnostic tool in symptomatic patients. Pancreas 1994;9:703–706.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim JE, Lee KT, Lee JK, et al.: Clinical usefulness of carbohydrate antigen 19–9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 2004;19:182–186.PubMedCrossRefGoogle Scholar
  56. 56.
    Ritts Re PH. CA 19–9 in pancreatic cancer. Surg Oncol Clin N Am 1998;7:93–101.PubMedGoogle Scholar
  57. 57.
    Miyazono F, Takao S, Natsugoe S, et al.: Molecular detection of circulating cancer cells during surgery in patients with biliary-pancreatic cancer. Am J Surg 1999;177:475–479.PubMedCrossRefGoogle Scholar
  58. 58.
    Kurihara T, Itoi T, Sofuni A, et al.: Detection of circulating tumor cells in patients with pancreatic cancer: a preliminary result. J Hepatobiliary Pancreat Surg 2008;15:189–195.PubMedCrossRefGoogle Scholar
  59. 59.
    Bagul A, Pushpakom S, Boylan J, et al.: Quantitative analysis of plasma DNA in severe acute pancreatitis. JOP 2006;7:602–607.PubMedGoogle Scholar
  60. 60.
    Holdenrieder S, Stieber P, Bodenmuller H, et al.: Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer 2001;95:114–120.PubMedCrossRefGoogle Scholar
  61. 61.
    van der Vaart M, Pretorius PJ: Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 2008;1137:18–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Pisetsky DS: The immune response to cell death in SLE. Autoimmun Rev 2004;3:500–504.PubMedCrossRefGoogle Scholar
  63. 63.
    Holdenrieder S, Nagel D, Schalhorn A, et al.: Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 2008;1137:180–189.PubMedCrossRefGoogle Scholar
  64. 64.
    Magistrelli P, Neri M, Granone P, et al.: K-ras mutations in circulating DNA from pancreatic and lung cancers: bridging methodology for a common validation of the molecular diagnosis value. Pancreas 2008;37:101–102.PubMedCrossRefGoogle Scholar
  65. 65.
    Galamb O, Gyorffy B, Sipos F, et al.: Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature. Dis Markers 2008;25:1–16.PubMedGoogle Scholar
  66. 66.
    Lu X, Xu T, Qian J, et al.: Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J (Engl) 2002;115:1632–1636.Google Scholar
  67. 67.
    Lohr M, Muller P, Mora J, et al.: p53 and K-ras mutations in pancreatic juice samples from patients with chronic pancreatitis. Gastrointestinal Endosc 2001;53:734–743.CrossRefGoogle Scholar
  68. 68.
    Luo JD, Chan EC, Shih CL, et al.: Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Res 2006;34:e12.PubMedCrossRefGoogle Scholar
  69. 69.
    Matsubayashi H, Canto M, Sato N, et al.: DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res 2006;66:1208–1217.PubMedCrossRefGoogle Scholar
  70. 70.
    Kangaspeska S, Stride B, Metivier R, et al.: Transient cyclical methylation of promoter DNA. Nature 2008;452:112–115.PubMedCrossRefGoogle Scholar
  71. 71.
    Bian Y, Matsubayashi H, Li CP, et al.: Detecting low-abundance p16 and p53 mutations in pancreatic juice using a novel assay: heteroduplex analysis of limiting dilution PCRs. Cancer Biol Ther 2006;5:1392–1399.PubMedGoogle Scholar
  72. 72.
    Shi C, Fukushima N, Abe T, et al.: Sensitive and quantitative detection of KRAS2 gene mutations in pancreatic duct juice differentiates patients with pancreatic cancer from chronic pancreatitis, potential for early detection. Cancer Biol Ther 2008;7:353–360.PubMedCrossRefGoogle Scholar
  73. 73.
    Yamaguchi Y, Watanabe H, Yrdiran S, et al.: Detection of mutations of p53 tumor suppressor gene in pancreatic juice and its application to diagnosis of patients with pancreatic cancer: comparison with K-ras mutation. Clin Cancer Res 1999;5:1147–1153.PubMedGoogle Scholar
  74. 74.
    Leitner T, Halapi E, Scarlatti G, et al.: Analysis of heterogeneous viral populations by direct DNA sequencing. BioTechniques 1993;15:120–127.PubMedGoogle Scholar
  75. 75.
    Poehlmann A, Kuester D, Meyer F, et al.: K-ras mutation detection in colorectal cancer using the Pyrosequencing technique. Pathol Res Pract 2007;203:489–497.PubMedCrossRefGoogle Scholar
  76. 76.
    Gronewold TM, Baumgartner A, Quandt E, et al.: Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. Anal Chem 2006;78:4865–4871.PubMedCrossRefGoogle Scholar
  77. 77.
    Vimalachandran D, Costello E: Proteomic technologies and their application to pancreatic cancer. Expert Rev Proteomics 2004;1:493–501.PubMedCrossRefGoogle Scholar
  78. 78.
    Pugliese V, Pujic N, Saccomanno S, et al.: Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and k-ras-2 codon 12 molecular analysis in 47 cases. Gastrointestinal Endosc 2001;54:595–599.CrossRefGoogle Scholar
  79. 79.
    Yamaguchi T, Shirai Y, Ishihara T, et al.: Pancreatic juice cytology in the diagnosis of intraductal papillary mucinous neoplasm of the pancreas: significance of sampling by peroral pancreatoscopy. Cancer 2005;104:2830–2836.PubMedCrossRefGoogle Scholar
  80. 80.
    Li D, Xie K, Wolff R, et al.: Pancreatic cancer. Lancet 2004;363:1049–1057.PubMedCrossRefGoogle Scholar
  81. 81.
    Almoguera C, Shibata D, Forrester K, et al.: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988;53:549–554.PubMedCrossRefGoogle Scholar
  82. 82.
    Kawesha A, Ghaneh P, Andren-Sandberg A, et al.: K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer 2000;89:469–474.PubMedCrossRefGoogle Scholar
  83. 83.
    Uemura T, Hibi K, Kaneko T, et al.: Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients. J Gastroenterol 2004;39:56–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Jiao L, Zhu J, Hassan MM, et al.: K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas 2007;34:55–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Maire F, Micard S, Hammel P, et al.: Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer 2002;87:551–554.PubMedCrossRefGoogle Scholar
  86. 86.
    Marchese R, Muleti A, Pasqualetti P, et al.: Low correspondence between K-ras mutations in pancreatic cancer tissue and detection of K-ras mutations in circulating DNA. Pancreas 2006;32:171–177.PubMedCrossRefGoogle Scholar
  87. 87.
    Trumper L, Menges M, Daus H, et al.: Low sensitivity of the ki-ras polymerase chain reaction for diagnosing pancreatic cancer from pancreatic juice and bile: a multicenter prospective trial. J Clin Oncol 2002;20:4331–4337.PubMedCrossRefGoogle Scholar
  88. 88.
    Wilentz RE, Chung CH, Sturm PD, et al.: K-ras mutations in the duodenal fluid of patients with pancreatic carcinoma. Cancer 1998;82:96–103.PubMedCrossRefGoogle Scholar
  89. 89.
    Van Laethem JL, Vertongen P, Deviere J, et al.: Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut 1995;36:781–787.PubMedCrossRefGoogle Scholar
  90. 90.
    Caldas C, Hahn SA, Hruban RH, et al.: Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 1994;54:3568–3573.PubMedGoogle Scholar
  91. 91.
    Haug U, Hillebrand T, Bendzko P, et al.: Mutant-enriched PCR and allele-specific hybridization reaction to detect K-ras mutations in stool DNA: high prevalence in a large sample of older adults. Clin Chem 2007;53:787–790.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhou GX, Huang JF, Li ZS, et al.: Detection of K-ras point mutation and telomerase activity during endoscopic retrograde cholangiopancreatography in diagnosis of pancreatic cancer. World J Gastroenterol 2004;10:1337–1340.PubMedGoogle Scholar
  93. 93.
    Vandervoort J, Soetikno RM, Montes H, et al.: Accuracy and complication rate of brush cytology from bile duct versus pancreatic duct. Gastrointestinal Endosc 1999;49:322–327.CrossRefGoogle Scholar
  94. 94.
    Watanabe H, Yamaguchi Y, Ha A, et al.: Quantitative determination of K-ras mutations in pancreatic juice for diagnosis of pancreatic cancer using hybridization protection assay. Pancreas 1998;17:341–347.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang Y, Yamaguchi Y, Watanabe H, et al.: Detection of p53 gene mutations in the supernatant of pancreatic juice and plasma from patients with pancreatic carcinomas. Pancreas 2004;28:13–19.PubMedCrossRefGoogle Scholar
  96. 96.
    Ha A, Watanabe H, Yamaguchi Y, et al.: Usefulness of supernatant of pancreatic juice for genetic analysis of K-ras in diagnosis of pancreatic carcinoma. Pancreas 2001;23:356–363.PubMedCrossRefGoogle Scholar
  97. 97.
    Uehara H, Nakaizumi A, Tatsuta M, et al.: Diagnosis of pancreatic cancer by detecting telomerase activity in pancreatic juice: comparison with K-ras mutations. Am J Gastroenterol 1999;94:2513–2518.PubMedCrossRefGoogle Scholar
  98. 98.
    Myung SJ, Kim MH, Kim YS, et al.: Telomerase activity in pure pancreatic juice for the diagnosis of pancreatic cancer may be complementary to K-ras mutation. Gastrointestinal Endosc 2000;51:708–713.CrossRefGoogle Scholar
  99. 99.
    Seki K, Suda T, Aoyagi Y, et al.: Diagnosis of pancreatic adenocarcinoma by detection of human telomerase reverse transcriptase messenger RNA in pancreatic juice with sample qualification. Clin Cancer Res 2001;7:1976–1981.PubMedGoogle Scholar
  100. 100.
    Boadas J, Mora J, Urgell E, et al.: Clinical usefulness of K-ras gene mutation detection and cytology in pancreatic juice in the diagnosis and screening of pancreatic cancer. Eur J Gastroenterol Hepatol 2001;13:1153–1159.PubMedCrossRefGoogle Scholar
  101. 101.
    Costentin L, Pages P, Bouisson M, et al.: Frequent deletions of tumor suppressor genes in pure pancreatic juice from patients with tumoral or nontumoral pancreatic diseases. Pancreatology 2002;2:17–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Tada M, Komatsu Y, Kawabe T, et al.: Quantitative analysis of K-ras gene mutation in pancreatic tissue obtained by endoscopic ultrasonography-guided fine needle aspiration: clinical utility for diagnosis of pancreatic tumor. Am J Gastroenterol 2002;97:2263–2270.PubMedCrossRefGoogle Scholar
  103. 103.
    Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, et al.: IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for Research on Cancer. Hum Mutat 1999;14:1–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Edwards MC, Gibbs RA: Multiplex PCR: advantages, development, and applications. PCR Methods Appl 1994;3:S65–S75.PubMedGoogle Scholar
  105. 105.
    Hodgson DR, Clayton SJ, Girdler F, et al.: ARMS allele-specific amplification-based detection of mutant p53 DNA and mRNA in tumors of the breast. Clin Chem 2001;47:774–778.PubMedGoogle Scholar
  106. 106.
    Yamaguchi K, Chijiiwa K, Torata N, et al.: Telomerase activity, P53 mutation and Ki-ras codon 12 point mutation of the peripheral blood in patients with hepato pancreato biliary diseases. HPB (Oxford) 2002;4:75–82.Google Scholar
  107. 107.
    Gansauge S, Schmid RM, Muller J, et al.: Genetic alterations in chronic pancreatitis: evidence for early occurrence of p53 but not K-ras mutations. Br J Surg 1998;85:337–340.PubMedCrossRefGoogle Scholar
  108. 108.
    Flaman JM, Frebourg T, Moreau V, et al.: A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 1995;92:3963–3967.PubMedCrossRefGoogle Scholar
  109. 109.
    Ohtsubo K, Watanabe H, Yao F, et al.: Preproenkephalin hypermethylation in the pure pancreatic juice compared with p53 mutation in the diagnosis of pancreatic carcinoma. J Gastroenterol 2006;41:791–797.PubMedCrossRefGoogle Scholar
  110. 110.
    Vucic EA, Brown CJ, Lam WL.: Epigenetics of cancer progression. Pharmacogenomics 2008;9:215–234.PubMedCrossRefGoogle Scholar
  111. 111.
    Sato N, Fukushima N, Hruban RH, et al.: CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 2008;21:238–244.PubMedCrossRefGoogle Scholar
  112. 112.
    Hussain SP, Harris CC: Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007;121:2373–2380.PubMedCrossRefGoogle Scholar
  113. 113.
    Matsubayashi H, Sato N, Brune K, et al.: Age- and disease-related methylation of multiple genes in nonneoplastic duodenum and in duodenal juice. Clin Cancer Res 2005;11:573–583.PubMedGoogle Scholar
  114. 114.
    Fukushima N, Walter KM, Uek T, et al.: Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther 2003;2:78–83.PubMedGoogle Scholar
  115. 115.
    Klump B, Hsieh CJ, Nehls O, et al.: Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br J Cancer 2003;88:217–222.PubMedCrossRefGoogle Scholar
  116. 116.
    Matsubayashi H, Sato N, Fukushima N, et al.: Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin Cancer Res 2003;9:1446–1452.PubMedGoogle Scholar
  117. 117.
    Jiang P, Watanabe H, Okada G, et al.: Diagnostic utility of aberrant methylation of tissue factor pathway inhibitor 2 in pure pancreatic juice for pancreatic carcinoma. Cancer Sci 2006;97:1267–1273.PubMedCrossRefGoogle Scholar
  118. 118.
    Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245–254.PubMedCrossRefGoogle Scholar
  119. 119.
    Kwabi-Addo B, Chung W, Shen L, et al.: Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 2007;13:3796–3802.PubMedCrossRefGoogle Scholar
  120. 120.
    Wsierska-Gadek J, Horky M: How the nucleolar sequestration of p53 protein or its interplayers contributes to its (re)-activation. Ann N Y Acad Sci 2003;1010:266–272.PubMedCrossRefGoogle Scholar
  121. 121.
    Zagon IS, McLaughlin PJ: Opioid growth factor (OGF) inhibits anchorage-independent growth in human cancer cells. Int J Oncol 2004;24:1443–1448.PubMedGoogle Scholar
  122. 122.
    Smith JP, Conter RL, Bingaman SI, et al.: Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anticancer Drugs 2004;15:203–209.PubMedCrossRefGoogle Scholar
  123. 123.
    Terris B, Blaveri E, Crnogorac-Jurcevic T, et al.: Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 2002;160:1745–1754.PubMedGoogle Scholar
  124. 124.
    Zakian VA: Life and cancer without telomerase. Cell 1997;91:1–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Meyerson M, Counter CM, Eaton EN, et al.: hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997;90:785–795.PubMedCrossRefGoogle Scholar
  126. 126.
    Suehara N, Mizumoto K, Tanaka M, et al.: Telomerase activity in pancreatic juice differentiates ductal carcinoma from adenoma and pancreatitis. Clin Cancer Res 1997;3:2479–2483.PubMedGoogle Scholar
  127. 127.
    Liu K, Schoonmaker MM, Levine BL, et al.: Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc Natl Acad Sci USA 1999;96:5147–5152.PubMedCrossRefGoogle Scholar
  128. 128.
    Furui T, Ikeda M, Chao-Ming L, et al.: Protein degradation in human pure pancreatic juice analyzed by two-dimensional gel electrophoresis. Electrophoresis 1996;17:797–802.PubMedCrossRefGoogle Scholar
  129. 129.
    Carlson C, Greenhalf W, Brentnall TA: Screening of hereditary pancreatic cancer families. In The Pancreas: An Integrated Textbook of Basic Science, Medicine and Surgery. H Beger, M Buchler, R Kozarek, M Lerch, J Neoptolemos, A Warshaw, K Shiratori, Oxford: Blackwell; 2008:636–642.Google Scholar
  130. 130.
    Canto MI, Goggins M, Hruban RH, et al.: Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006;4:766–781; quiz 665.PubMedCrossRefGoogle Scholar
  131. 131.
    Klapman J, Malafa MP: Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 2008;15:280–287.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • William Greenhalf
    • 1
  • John Neoptolemos
    • 1
  1. 1.Division of Surgery and OncologyRoyal Liverpool University HospitalLiverpool GAUK

Personalised recommendations