Molecular Pathology of Precursor Lesions of Pancreatic Cancer

  • Georg Feldmann
  • Anirban Maitra


It has become evident over the past decade that pancreatic ductal adenocarcinoma (a.k.a. pancreatic cancer) does not originate de novo, but rather, through a multistep progression that involves histologically defined precursor lesions. Three major subtypes of precursor lesions of pancreatic cancer have been identified to date, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN). PanINs constitute by far the most common precursor lesions, and are, by definition, microscopic in nature, while IPMNs and MCNs occur less frequently and are macroscopic (i.e., radiologically detectable) precursor lesions. In addition to the development of consensus histopathological criteria for the identification and classification of pancreatic cancer precursors, there has also been considerable progress made in characterizing the genetic abnormalities underlying these lesions. Elucidating the molecular pathology of precursor lesions has enabled a better understanding of the pathogenesis of early pancreatic neoplasia, and provided a seedbed for developing tools for early detection and chemoprevention of pancreatic cancer prior to onset of invasion. Histopathology, molecular genetics as well as clinical implications and possible directions for future research of PanINs, IPMNs and MCNs will be discussed in this chapter.


Pancreatic Cancer Intraductal Papillary Mucinous Neoplasm Precursor Lesion Mucinous Cystic Neoplasm Prostate Stem Cell Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525–532.CrossRefPubMedGoogle Scholar
  2. 2.
    Hruban RH, Wilentz RE, Maitra A: Identification and analysis of precursors to invasive pancreatic cancer. Methods Mol Med 2005;103:1–13.PubMedGoogle Scholar
  3. 3.
    Berman JJ, Albores-Saavedra J, Bostwick D, Delellis R, Eble J, Hamilton SR, Hruban RH, Mutter GL, Page D, Rohan T, Travis W, Henson DE: Precancer: a conceptual working definition – results of a consensus conference. Cancer Detect Prev 2006;30:387–394.CrossRefPubMedGoogle Scholar
  4. 4.
    Hulst SLP: Zur kenntnis der genese des adenokarzinoms und karzinoms des pankreas. Virchows Archiv 1905;180:288–316.CrossRefGoogle Scholar
  5. 5.
    Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, Biankin SA, Compton C, Fukushima N, Furukawa T, Goggins M, Kato Y, Kloppel G, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Shimizu M, Yonezawa S: An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2004;28:977–987.CrossRefPubMedGoogle Scholar
  6. 6.
    Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001;25:579–586.CrossRefPubMedGoogle Scholar
  7. 7.
    Hruban RH, Maitra A, Kern SE, Goggins M: Precursors to pancreatic cancer. Gastroenterol Clin North Am 2007;36:831–849.CrossRefPubMedGoogle Scholar
  8. 8.
    Andea A, Sarkar F, Adsay VN: Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol 2003;16:996–1006.CrossRefPubMedGoogle Scholar
  9. 9.
    Agoff SN, Crispin DA, Bronner MP, Dail DH, Hawes SE, Haggitt RC: Neoplasms of the ampulla of vater with concurrent pancreatic intraductal neoplasia: a histological and molecular study. Mod Pathol 2001;14:139–146.CrossRefPubMedGoogle Scholar
  10. 10.
    Stelow EB, Adams RB, Moskaluk CA: The prevalence of pancreatic intraepithelial neoplasia in pancreata with uncommon types of primary neoplasms. Am J Surg Pathol 2006;30:36–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, Yeo CJ, Hruban RH: Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 2003;16:902–912.CrossRefPubMedGoogle Scholar
  12. 12.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M: Most human carcinomas of the exocrine pancreas contain mutant c-k-ras genes. Cell 1988;53:549–554.CrossRefPubMedGoogle Scholar
  13. 13.
    Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL: K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 1993;143:545–554.PubMedGoogle Scholar
  14. 14.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437–450.CrossRefPubMedGoogle Scholar
  15. 15.
    Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA: Activated kras and ink4a/arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003;17:3112–3126.CrossRefPubMedGoogle Scholar
  16. 16.
    Baines AT, Lim KH, Shields JM, Lambert JM, Counter CM, Der CJ, Cox AD: Use of retrovirus expression of interfering rna to determine the contribution of activated k-ras and ras effector expression to human tumor cell growth. Methods Enzymol 2006;407:556–574.CrossRefPubMedGoogle Scholar
  17. 17.
    Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated rna interference. Cancer Cell 2002;2:243–247.CrossRefPubMedGoogle Scholar
  18. 18.
    Sherr CJ: Cell cycle control and cancer. Harvey Lect 2000;96:73–92.PubMedGoogle Scholar
  19. 19.
    Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE: Frequent somatic mutations and homozygous deletions of the p16 (mts1) gene in pancreatic adenocarcinoma. Nat Genet 1994;8:27–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilentz RE, Geradts J, Maynard R, Offerhaus GJ, Kang M, Goggins M, Yeo CJ, Kern SE, Hruban RH: Inactivation of the p16 (ink4a) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 1998;58:4740–4744.PubMedGoogle Scholar
  21. 21.
    Hustinx SR, Leoni LM, Yeo CJ, Brown PN, Goggins M, Kern SE, Hruban RH, Maitra A: Concordant loss of mtap and p16/cdkn2a expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol 2005;18:959–963.CrossRefPubMedGoogle Scholar
  22. 22.
    Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA: Trp53r172h and krasg12d cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005;7:469–483.CrossRefPubMedGoogle Scholar
  23. 23.
    Baas IO, Mulder JW, Offerhaus GJ, Vogelstein B, Hamilton SR: An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 1994;172:5–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, Seymour AB, Weinstein CL, Yeo CJ, Hruban RH, Kern SE: Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 1996;56:490–494.PubMedGoogle Scholar
  25. 25.
    Massague J, Blain SW, Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ: Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006;441:1015–1019.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of dpc4 in pancreatic intraepithelial neoplasia: evidence that dpc4 inactivation occurs late in neoplastic progression. Cancer Res 2000;60:2002–2006.PubMedGoogle Scholar
  28. 28.
    Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004;10:789–799.CrossRefPubMedGoogle Scholar
  29. 29.
    D’Andrea AD, Grompe M: The fanconi anaemia/brca pathway. Nat Rev Cancer 2003;3:23–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, Rothenmund H, Gallinger S, Klein A, Petersen GM, Hruban RH: The prevalence of brca2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2007;16:342–346.CrossRefPubMedGoogle Scholar
  31. 31.
    van der Heijden MS, Brody JR, Gallmeier E, Cunningham SC, Dezentje DA, Shen D, Hruban RH, Kern SE: Functional defects in the fanconi anemia pathway in pancreatic cancer cells. Am J Pathol 2004;165:651–657.PubMedGoogle Scholar
  32. 32.
    Luttges J, Galehdari H, Brocker V, Schwarte-Waldhoff I, Henne-Bruns D, Kloppel G, Schmiegel W, Hahn SA: Allelic loss is often the first hit in the biallelic inactivation of the p53 and dpc4 genes during pancreatic carcinogenesis. Am J Pathol 2001;158:1677–1683.PubMedGoogle Scholar
  33. 33.
    Yamano M, Fujii H, Takagaki T, Kadowaki N, Watanabe H, Shirai T: Genetic progression and divergence in pancreatic carcinoma. Am J Pathol 2000;156:2123–2133.PubMedGoogle Scholar
  34. 34.
    Kuroki T, Tajima Y, Kanematsu T: Role of hypermethylation on carcinogenesis in the pancreas. Surg Today 2004;34:981–986.CrossRefPubMedGoogle Scholar
  35. 35.
    Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000;16:168–174.CrossRefPubMedGoogle Scholar
  36. 36.
    Sato N, Fukushima N, Hruban RH, Goggins M: Cpg island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 2008;21:238–244.CrossRefPubMedGoogle Scholar
  37. 37.
    Peng DF, Kanai Y, Sawada M, Ushijima S, Hiraoka N, Kitazawa S, Hirohashi S: DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (dnmt1) during multistage carcinogenesis of the pancreas. Carcinogenesis 2006;27:1160–1168.CrossRefPubMedGoogle Scholar
  38. 38.
    Goggins M: Identifying molecular markers for the early detection of pancreatic neoplasia. Semin Oncol 2007;34:303–310.CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka M, Komatsu N, Terakawa N, Yanagimoto Y, Oka M, Sasada T, Mine T, Gouhara S, Shichijo S, Okuda S, Itoh K: Increased levels of IgG antibodies against peptides of the prostate stem cell antigen in the plasma of pancreatic cancer patients. Oncol Rep 2007;18:161–166.PubMedGoogle Scholar
  40. 40.
    Foss CA, Fox JJ, Feldmann G, Maitra A, Iacobuzio-Donohue C, Kern SE, Hruban R, Pomper MG: Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer. Mol Imaging 2007;6:131–139.PubMedGoogle Scholar
  41. 41.
    Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, Leach SD, Jaffee E, Yeo CJ, Cameron JL, Kern SE, Hruban RH: Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (sage). Clin Cancer Res 2001;7:3862–3868.PubMedGoogle Scholar
  42. 42.
    Li M, Bharadwaj U, Zhang R, Zhang S, Mu H, Fisher WE, Brunicardi FC, Chen C, Yao Q: Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 2008;7:286–296.CrossRefPubMedGoogle Scholar
  43. 43.
    Hassan R, Ebel W, Routhier EL, Patel R, Kline JB, Zhang J, Chao Q, Jacob S, Turchin H, Gibbs L, Phillips MD, Mudali S, Iacobuzio-Donahue C, Jaffee EM, Moreno M, Pastan I, Sass PM, Nicolaides NC, Grasso L: Preclinical evaluation of morab-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun 2007;7:20.PubMedGoogle Scholar
  44. 44.
    Segara D, Biankin AV, Kench JG, Langusch CC, Dawson AC, Skalicky DA, Gotley DC, Coleman MJ, Sutherland RL, Henshall SM: Expression of hoxb2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin Cancer Res 2005;11:3587–3596.CrossRefPubMedGoogle Scholar
  45. 45.
    Klein WM, Hruban RH, Klein-Szanto AJ, Wilentz RE: Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (panin): additional evidence for a recently proposed model of progression. Mod Pathol 2002;15:441–447.CrossRefPubMedGoogle Scholar
  46. 46.
    Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, Hugh TB, Henshall SM, Sutherland RL: Overexpression of p21(waf1/cip1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 2001;61:8830–8837.PubMedGoogle Scholar
  47. 47.
    Sarkar FH, Adsule S, Li Y, Padhye S: Back to the future: Cox-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 2007;7:599–608.CrossRefPubMedGoogle Scholar
  48. 48.
    Larsson SC, Giovannucci E, Bergkvist L, Wolk A: Aspirin and nonsteroidal anti-inflammatory drug use and risk of pancreatic cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006;15:2561–2564.CrossRefPubMedGoogle Scholar
  49. 49.
    Shiomi T, Okada Y: Mt1-mmp and mmp-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 2003;22:145–152.CrossRefPubMedGoogle Scholar
  50. 50.
    Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD: Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 2002;109:1437–1444.PubMedGoogle Scholar
  51. 51.
    Harvey SR, Hurd TC, Markus G, Martinick MI, Penetrante RM, Tan D, Venkataraman P, DeSouza N, Sait SN, Driscoll DL, Gibbs JF: Evaluation of urinary plasminogen activator, its receptor, matrix metalloproteinase-9, and von willebrand factor in pancreatic cancer. Clin Cancer Res 2003;9:4935–4943.PubMedGoogle Scholar
  52. 52.
    Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev 2008;22:2454–2472.CrossRefPubMedGoogle Scholar
  53. 53.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–1037.CrossRefPubMedGoogle Scholar
  54. 54.
    Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H, Koorstra JB, Habbe N, Karikari C, Mullendore M, Gabrielson KL, Sharma R, Matsui W, Maitra A: An orally bioavailable small-molecule inhibitor of hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 2008;7:2725–2735.CrossRefPubMedGoogle Scholar
  55. 55.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Gabrielson KL, Matsui W, Maitra A: Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007;67:2187–2196.CrossRefPubMedGoogle Scholar
  56. 56.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425:851–856.CrossRefPubMedGoogle Scholar
  57. 57.
    Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, Goggins M, Leach SD: Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 2005;65:1619–1626.CrossRefPubMedGoogle Scholar
  58. 58.
    Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M: Common activation of canonical wnt signaling in pancreatic adenocarcinoma. PLoS ONE 2007;2:e1155.CrossRefPubMedGoogle Scholar
  59. 59.
    Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS: Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res 2004;10:1235–1240.CrossRefPubMedGoogle Scholar
  60. 60.
    Doucas H, Garcea G, Neal CP, Manson MM, Berry DP: Changes in the wnt signalling pathway in gastrointestinal cancers and their prognostic significance. Eur J Cancer 2005;41:365–379.CrossRefPubMedGoogle Scholar
  61. 61.
    Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Perez-Gallego L, Redston M, Tuveson DA: Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 2006;66:95–106.CrossRefPubMedGoogle Scholar
  62. 62.
    Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Oullette MM, Yu W, Maitra A: Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008.Google Scholar
  63. 63.
    Faca VM, Song KS, Wang H, Zhang Q, Krasnoselsky AL, Newcomb LF, Plentz RR, Gurumurthy S, Redston MS, Pitteri SJ, Pereira-Faca SR, Ireton RC, Katayama H, Glukhova V, Phanstiel D, Brenner DE, Anderson MA, Misek D, Scholler N, Urban ND, Barnett MJ, Edelstein C, Goodman GE, Thornquist MD, McIntosh MW, DePinho RA, Bardeesy N, Hanash SM: A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008;5:e123.CrossRefPubMedGoogle Scholar
  64. 64.
    Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G: Delayed progression of pancreatic intraepithelial neoplasia in a conditional kras(g12d) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 2007;67:7068–7071.CrossRefPubMedGoogle Scholar
  65. 65.
    Brune K, Abe T, Canto M, O’Malley L, Klein AP, Maitra A, Volkan Adsay N, Fishman EK, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH: Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 2006;30:1067–1076.PubMedGoogle Scholar
  66. 66.
    Canto MI, Goggins M, Hruban RH, Petersen GM, Giardiello FM, Yeo C, Fishman EK, Brune K, Axilbund J, Griffin C, Ali S, Richman J, Jagannath S, Kantsevoy SV, Kalloo AN: Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006;4:766–781; quiz 665.CrossRefPubMedGoogle Scholar
  67. 67.
    Terhune PG, Phifer DM, Tosteson TD, Longnecker DS: K-ras mutation in focal proliferative lesions of human pancreas. Cancer Epidemiol Biomarkers Prev 1998;7:515–521.PubMedGoogle Scholar
  68. 68.
    Chari ST, Yadav D, Smyrk TC, DiMagno EP, Miller LJ, Raimondo M, Clain JE, Norton IA, Pearson RK, Petersen BT, Wiersema MJ, Farnell MB, Sarr MG: Study of recurrence after surgical resection of intraductal papillary mucinous neoplasm of the pancreas. Gastroenterology 2002;123:1500–1507.CrossRefPubMedGoogle Scholar
  69. 69.
    Salvia R, Fernandez-del Castillo C, Bassi C, Thayer SP, Falconi M, Mantovani W, Pederzoli P, Warshaw AL: Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg 2004;239:678–685; discussion 685–677.CrossRefPubMedGoogle Scholar
  70. 70.
    Silas AM, Morrin MM, Raptopoulos V, Keogan MT: Intraductal papillary mucinous tumors of the pancreas. AJR Am J Roentgenol 2001;176:179–185.PubMedGoogle Scholar
  71. 71.
    Maitra A, Fukushima N, Takaori K, Hruban RH: Precursors to invasive pancreatic cancer. Adv Anat Pathol 2005;12:81–91.CrossRefPubMedGoogle Scholar
  72. 72.
    Terris B, Ponsot P, Paye F, Hammel P, Sauvanet A, Molas G, Bernades P, Belghiti J, Ruszniewski P, Flejou JF: Intraductal papillary mucinous tumors of the pancreas confined to secondary ducts show less aggressive pathologic features as compared with those involving the main pancreatic duct. Am J Surg Pathol 2000;24:1372–1377.CrossRefPubMedGoogle Scholar
  73. 73.
    Farrell JJ, Brugge WR: Intraductal papillary mucinous tumor of the pancreas. Gastrointest Endosc 2002;55:701–714.CrossRefPubMedGoogle Scholar
  74. 74.
    Tanaka M: Intraductal papillary mucinous neoplasm of the pancreas: iagnosis and treatment. Pancreas 2004;28:282–288.CrossRefPubMedGoogle Scholar
  75. 75.
    Ban S, Naitoh Y, Mino-Kenudson M, Sakurai T, Kuroda M, Koyama I, Lauwers GY, Shimizu M: Intraductal papillary mucinous neoplasm (ipmn) of the pancreas. Its histopathologic difference between 2 major types. Am J Surg Pathol 2006;30:1561–1569.CrossRefPubMedGoogle Scholar
  76. 76.
    Adsay NV, Merati K, Andea A, Sarkar F, Hruban RH, Wilentz RE, Goggins M, Iocobuzio-Donahue C, Longnecker DS, Klimstra DS: The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of muc1 and muc2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 2002;15:1087–1095.CrossRefPubMedGoogle Scholar
  77. 77.
    Seidel G, Zahurak M, Iacobuzio-Donahue C, Sohn TA, Adsay NV, Yeo CJ, Lillemoe KD, Cameron JL, Hruban RH, Wilentz RE: Almost all infiltrating colloid carcinomas of the pancreas andxx periampullary region arise from in situ papillary neoplasms: a study of 39 cases. Am J Surg Pathol 2002;26:56–63.CrossRefPubMedGoogle Scholar
  78. 78.
    Adsay NV, Pierson C, Sarkar F, Abrams J, Weaver D, Conlon KC, Brennan MF, Klimstra DS: Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol 2001;25:26–42.CrossRefPubMedGoogle Scholar
  79. 79.
    Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, Head DR, Eckstein RP, Hugh TB, Henshall SM, Sutherland RL: Aberrant p16(ink4a) and dpc4/smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 2002;50:861–868.CrossRefPubMedGoogle Scholar
  80. 80.
    Sasaki S, Yamamoto H, Kaneto H, Ozeki I, Adachi Y, Takagi H, Matsumoto T, Itoh H, Nagakawa T, Miyakawa H, Muraoka S, Fujinaga A, Suga T, Satoh M, Itoh F, Endo T, Imai K: Differential roles of alterations of p53, p16, and Smad4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 2003;10:21–25.PubMedGoogle Scholar
  81. 81.
    Schonleben F, Qiu W, Ciau NT, Ho DJ, Li X, Allendorf JD, Remotti HE, Su GH: Pik3ca mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 2006;12:3851–3855.CrossRefPubMedGoogle Scholar
  82. 82.
    Sato N, Fukushima N, Maitra A, Iacobuzio-Donahue CA, van Heek NT, Cameron JL, Yeo CJ, Hruban RH, Goggins M: Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 2004;164:903–914.PubMedGoogle Scholar
  83. 83.
    Terris B, Blaveri E, Crnogorac-Jurcevic T, Jones M, Missiaglia E, Ruszniewski P, Sauvanet A, Lemoine NR: Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 2002;160:1745–1754.PubMedGoogle Scholar
  84. 84.
    Ohuchida K, Mizumoto K, Fujita H, Yamaguchi H, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M: Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mrna levels in pancreatic juice. J Pathol 2006;210:42–48.CrossRefPubMedGoogle Scholar
  85. 85.
    Nishikawa N, Kimura Y, Okita K, Zembutsu H, Furuhata T, Katsuramaki T, Kimura S, Asanuma H, Hirata K: Intraductal papillary mucinous neoplasms of the pancreas: an analysis of protein expression and clinical features. J Hepatobiliary Pancreat Surg 2006;13:327–335.CrossRefPubMedGoogle Scholar
  86. 86.
    Cheung W, Darfler MM, Alvarez H, Hood BL, Conrads TP, Habbe N, Krizman DB, Mollenhauer J, Feldmann G, Maitra A: Application of a global proteomic approach to archival precursor lesions: deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology 2008;8:608–616.CrossRefPubMedGoogle Scholar
  87. 87.
    Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM: Concomitant pancreatic activation of kras(g12d) and tgfa results in cystic papillary neoplasms reminiscent of human ipmn. Cancer Cell 2007;12:266–279.CrossRefPubMedGoogle Scholar
  88. 88.
    Hruban RH, Pitman MB, Klimstra DS: Tumors of the pancreas. Atlas of tumor pathology, 4th series, fascicle 6th edn. Washington, DC, American Registry of Pathology and Armed Forces Institute of Pathology, 2007.Google Scholar
  89. 89.
    Tanaka M, Chari S, Adsay V, Fernandez-del Castillo C, Falconi M, Shimizu M, Yamaguchi K, Yamao K, Matsuno S: International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 2006;6:17–32.CrossRefPubMedGoogle Scholar
  90. 90.
    Sahani DV, Saokar A, Hahn PF, Brugge WR, Fernandez-Del Castillo C: Pancreatic cysts 3 cm or smaller: how aggressive should treatment be? Radiology 2006;238:912–919.CrossRefPubMedGoogle Scholar
  91. 91.
    Allen PJ, D’Angelica M, Gonen M, Jaques DP, Coit DG, Jarnagin WR, DeMatteo R, Fong Y, Blumgart LH, Brennan MF: A selective approach to the resection of cystic lesions of the pancreas: results from 539 consecutive patients. Ann Surg 2006;244:572–582.PubMedGoogle Scholar
  92. 92.
    Tada M, Kawabe T, Arizumi M, Togawa O, Matsubara S, Yamamoto N, Nakai Y, Sasahira N, Hirano K, Tsujino T, Tateishi K, Isayama H, Toda N, Yoshida H, Omata M: Pancreatic cancer in patients with pancreatic cystic lesions: a prospective study in 197 patients. Clin Gastroenterol Hepatol 2006;4:1265–1270.CrossRefPubMedGoogle Scholar
  93. 93.
    Le Borgne J, de Calan L, Partensky C: Cystadenomas and cystadenocarcinomas of the pancreas: a multiinstitutional retrospective study of 398 cases. French Surgical Association. Ann Surg 1999;230:152–161.CrossRefPubMedGoogle Scholar
  94. 94.
    Zamboni G, Scarpa A, Bogina G, Iacono C, Bassi C, Talamini G, Sessa F, Capella C, Solcia E, Rickaert F, Mariuzzi GM, Kloppel G: Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol 1999;23:410–422.CrossRefPubMedGoogle Scholar
  95. 95.
    Albores-Saavedra J, Angeles-Angeles A, Nadji M, Henson DE, Alvarez L: Mucinous cystadenocarcinoma of the pancreas. Morphologic and immunocytochemical observations. Am J Surg Pathol 1987;11:11–20.CrossRefPubMedGoogle Scholar
  96. 96.
    Fukushima N, Sato N, Prasad N, Leach SD, Hruban RH, Goggins M: Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene 2004;23:9042–9051.CrossRefPubMedGoogle Scholar
  97. 97.
    Lam MM, Swanson PE, Upton MP, Yeh MM: Ovarian-type stroma in hepatobiliary cystadenomas and pancreatic mucinous cystic neoplasms: an immunohistochemical study. Am J Clin Pathol 2008;129:211–218.CrossRefPubMedGoogle Scholar
  98. 98.
    Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP: A novel somatic mouse model to survey tumorigenic potential applied to the hedgehog pathway. Cancer Res 2006;66:10171–10178.CrossRefPubMedGoogle Scholar
  99. 99.
    Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR: Kras(g12d) and smad4/dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 2007;11:229–243.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Georg Feldmann
    • 1
  • Anirban Maitra
    • 1
  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations