Developmental Molecular Biology of the Pancreas

  • Ondine Cleaver
  • Raymond J. MacDonald


Pancreatic organogenesis is a complex and coordinated process that generates a compound gland of exocrine tissue composed of acini and ducts, and endocrine tissue organized in islets of Langerhans. Both tissues originate from the same early endodermal epithelium through cell-cell signaling exchanges with associated mesenchyme that direct a cascade of transcriptional regulatory events. Current research is aimed at elucidating the formation of pancreatic cell types and the molecular mechanisms that shape the anatomy and physiology of the pancreas. A number of intrinsic factors, such as transcriptional regulators, and extrinsic signaling factors, such as secreted growth factors, morphogens and cell-surface ligands, have been shown to be determinants of cell-fate decisions, proliferation, or differentiation. The interplay between organ-restricted intrinsic factors and widely used extrinsic factors guides the step-wise process of pancreatic development from early endodermal patterning and specification of the initial pancreatic field, to expansion of pools of progenitors, resolution of individual cell-types, and the differentiation of mature exocrine and endocrine cells. A better understanding of pancreatic development is proving useful for comprehending the regulatory defects that drive pancreatic carcinogenesis and for devising effective therapies to correct those defects.


Acinar Cell Endocrine Cell Definitive Endoderm Secondary Transition Pancreatic Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Chris Wright for the Pdx1-lacZ mice used for Fig. 4-1 . We are indebted to Galvin Swift for critical readings of the manuscript, helpful discussions and invaluable comments; to Jose Cabrera for the tireless creation of beautiful schematics illustrating complex pancreatic processes and developmental anatomy; to Alethia Villasenor, Diana Chong, Ling Shi and Mike Hale for contributing unpublished data and images. This work was supported by NIH R01 grant DK79862-01, JDRF Award 99-2007-472 and a Basil O’Connor March of Dimes Award to O.C., and NIH DK61220 and an American Pancreatic Foundation award to R.J.M.


  1. 1.
    Githens S: The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation and culture. J Ped Gastroent Nutr 1988;7:486–506.Google Scholar
  2. 2.
    Pictet R, Rutter WJ: Development of the embryonic endocrine pancreas. In Handbook of Physiology. Section 7: Endocrinology, Vol. I.Endocrine Pancreas. DF Steiner, N Freinkel (ed.). Baltimore: Williams and Wilkins, 1972, pp. 25–66.Google Scholar
  3. 3.
    Jensen J: Gene regulatory factors in pancreatic development. Dev Dyn 2004;229:176–200.PubMedGoogle Scholar
  4. 4.
    Pictet RL, Clark WR, Williams RH, Rutter WJ: An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 1972;29:436–467.PubMedGoogle Scholar
  5. 5.
    Stanger BZ, Tanaka AJ, Melton D: Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 2007;445:886–891.PubMedGoogle Scholar
  6. 6.
    Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J: An illustrated review of early pancreas development in the mouse. Endo Rev 2007;28:685–705.Google Scholar
  7. 7.
    Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA: A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 2007;13:103–114.PubMedGoogle Scholar
  8. 8.
    Motta PM, Macchiaraelli G, Nottola SA, Correr S: Histology of the exocrine pancreas. Microsc Res Tech 1997;37:384–398.PubMedGoogle Scholar
  9. 9.
    Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M: SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA 2007;104:1865–1870.PubMedGoogle Scholar
  10. 10.
    Stanger BZ, Stiles B, Lauwers GY, Bardeesy N, Mendoza M, Wang Y, Greenwood A, Chen K-h, McLaughlin M, Brown D, DePinho RA, Wu H, Melton DA, Dor Y: Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 2005;8:185–195.PubMedGoogle Scholar
  11. 11.
    Rukstalis JM, Habener JF: Snail2, a mediator of epitheliall-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns 2007;7:471–479.PubMedGoogle Scholar
  12. 12.
    Harding JD, MacDonald RJ, Przybyla AE, Chirgwin JM, Pictet RL, Rutter WJ: Changes in the frequency of specific transcripts during development of the pancreas. J Biol Chem 1977;252:7391–7397.PubMedGoogle Scholar
  13. 13.
    Bouwens L, Lu WG, Krijger R: Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 1997;40:398–404.PubMedGoogle Scholar
  14. 14.
    Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429:41–46.PubMedGoogle Scholar
  15. 15.
    Finegood DT, Scaglia L, Bonner-Weir S: Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995;44:249–256.PubMedGoogle Scholar
  16. 16.
    Teta M, Rankin MM, Long SY, Stein GM, Kushner JA: Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007;12:817–826.PubMedGoogle Scholar
  17. 17.
    Githens S: Differentiation and development of the pancreas in animals. In VLE The Pancreas: Biology, Pathobiology and Disease. Go (ed.). New York: Raven Press, 1993, pp. 21–55.Google Scholar
  18. 18.
    Jia D, Sun Y, Konieczny SF: Mist1 Regulates Pancreatic Acinar Cell Proliferation Through p21(CIP1/WAF1). Gastroenterology 2008;135:1687–1697. .doi:10.1053/j.gastro.2008.07.026PubMedGoogle Scholar
  19. 19.
    Desai BM, Oliver-Krasinski J, De Leon D, Farzad C, Hong N, Leach SD, Stoffers DA: Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007;117:971–977.PubMedGoogle Scholar
  20. 20.
    Bertelli E, Bendayan M: Association between endocrine pancreas and ductal system. More than an epiphenomenon of endocrine differentiation and development? J Histochem Cytochem 2005;53:1071–1086.PubMedGoogle Scholar
  21. 21.
    Attisano L, Labbe E: Tgfbeta and Wnt pathway cross-talk. Cancer metastasis rev 2004;23:53–61.PubMedGoogle Scholar
  22. 22.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA: Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846–851.PubMedGoogle Scholar
  23. 23.
    Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD: Motch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003;3:565–676.PubMedGoogle Scholar
  24. 24.
    Moustakas A, Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer sci 2007;98:1512–1520.PubMedGoogle Scholar
  25. 25.
    Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M: Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS ONE 2007;2:e1155.PubMedGoogle Scholar
  26. 26.
    Guo X, Wang XF: Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2008;19:17–88. epub. doi:10.1038/cr.2008.302.Google Scholar
  27. 27.
    Hebrok M, Kim SK, Melton DA: Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705–1713.PubMedGoogle Scholar
  28. 28.
    Hebrok M, Kim SK, St-Jacques B, McMahon AP, Melton DA: Regulation of pancreas development by hedgehog signaling. Development 2000;127:4905–4913.PubMedGoogle Scholar
  29. 29.
    Kumar M, Jordan N, Melton D, Grapin-Botton A: Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol 2003;259:109–122.PubMedGoogle Scholar
  30. 30.
    Kim SK, Hebrok M, Li E, Oh SP, Schrewe H, Harmon EB, Lee JS, Melton DA: Activin receptor patterning of foregut organogenesis. Genes Dev 2000;14:1866–1871.PubMedGoogle Scholar
  31. 31.
    Yamaoka T, Idehara C, Yano M, Matsushita T, Yamada T, Ii S, Moritani M, Hata J, Sugino H, Noji S, Itakura M: Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest 1998;102:294–301.PubMedGoogle Scholar
  32. 32.
    Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev 2008;22:2454–2472.PubMedGoogle Scholar
  33. 33.
    Kim SK, Melton DA: Pancreas development is promoted by cyclopamine, a Hedgehog signaling inhibitor. Proc Natl Acad Sci USA 1998;95:13036–13041.PubMedGoogle Scholar
  34. 34.
    Apelqvist A, Ahlgren U, Edlund H: Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol 1997;7:801–804.PubMedGoogle Scholar
  35. 35.
    Kim SK, MacDonald RJ: Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 2002;12:540–547.PubMedGoogle Scholar
  36. 36.
    Murtaugh LC: The what, where, when and how of Wnt/beta-catenin signaling in pancreas development. Organogenesis 2008;4:81–86.PubMedGoogle Scholar
  37. 37.
    Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483–1487.PubMedGoogle Scholar
  38. 38.
    Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M: Stabilization of beta-catenin impacts pancreas growth. Development 2006;133:2023–2032.PubMedGoogle Scholar
  39. 39.
    Heller RS, Dichmann DS, Jensen J, Miller C, Wong G, Madsen OD, Serup P: Expression patterns of Wnts, Frizzleds, sfrps, and misexpression in trangenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn 2002;225:260–270.PubMedGoogle Scholar
  40. 40.
    Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A: Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and wnt-independent functions during development. Curr Biol 2005;15:1677–1683.PubMedGoogle Scholar
  41. 41.
    Murtaugh LC, Law AC, Dor Y, Melton DA: B-catenin is essential or pancreatic acinar but not islet development. Development 2005;132:4663–4674.PubMedGoogle Scholar
  42. 42.
    Wells JM, Esni F, Boivin GP, Aronow BJ, tuart W, Combs C, Sklenka A, Leach SD, Lowy AM: Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev Biol 2007;7:4.PubMedGoogle Scholar
  43. 43.
    Fiuza UM, Arias AM: Cell and molecular biology of Notch. J Endocrinol 2007;194:459–474.PubMedGoogle Scholar
  44. 44.
    Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H: Notch signalling controls pancreatic cell differentiation. Nature 1999;400:877–881.PubMedGoogle Scholar
  45. 45.
    Fujikura J, Hosoda K, Iwakura H, Tomita T, Noguchi M, Masuzaki H, Tanigaki K, Yabe D, Honjo T, Nakao K: Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas. Cell Metab 2006;3:59–65.PubMedGoogle Scholar
  46. 46.
    Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD: Control of endodermal endocrine development by Hes-1. Nat Genet 2000;24:36–44.PubMedGoogle Scholar
  47. 47.
    Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ: Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bhlh complex. Genes Dev 2007;21:2629–2643.PubMedGoogle Scholar
  48. 48.
    Nakhai H, Siveke JT, Klein B, Mendoza-Torres L, Mazur PK, Algul H, Radtke F, Strobl L, Zimber-Strobl U, Schmid RM: Conditional ablation of Notch signaling in pancreatic development. Development 2008;135:2757–2765.PubMedGoogle Scholar
  49. 49.
    Ross SA, McCaffery PJ, Drager UC, De Luca LM: Retinoids in embryonal development. Physiol Rev 2000;80:1021–1054.PubMedGoogle Scholar
  50. 50.
    Niederreither K, McCaffery P, Drager UC, Chambon P, Dolle P: Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 1997;62:67–78.PubMedGoogle Scholar
  51. 51.
    Martin M, Gallego-Liamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dolle P, Gradwohl G: Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol 2005;284:399–411.PubMedGoogle Scholar
  52. 52.
    Molotkov A, Molotkova N, Duester G: Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn 2005;232:950–957.PubMedGoogle Scholar
  53. 53.
    Pan FC, Chen Y, Bayha E, Pieler T: Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech Dev 2007;124:518–531.PubMedGoogle Scholar
  54. 54.
    Stafford D, Hornbruch A, Mueller PR, Prince VE: A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol 2004;214:432–441.PubMedGoogle Scholar
  55. 55.
    Stafford D, Prince VE: Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 2002;12:1215–1220.PubMedGoogle Scholar
  56. 56.
    Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R: Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 2001;128:5109–5117.PubMedGoogle Scholar
  57. 57.
    Miettinen P, Ormio P, Hakonen E, Banerjee M, Otonkoski T: EGF receptor in pancreatic beta-cell mass regulation. Biochem Soc Trans 2008;36:280–285.PubMedGoogle Scholar
  58. 58.
    Lammert E, Cleaver O, Melton D: Induction of pancreatic differentiation by signals from blood vessels. Science 2002;294:564–567.Google Scholar
  59. 59.
    Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, Gerber HP, Ferrara N, Melton DA: Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 2003;13:1070–1074.PubMedGoogle Scholar
  60. 60.
    Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.PubMedGoogle Scholar
  61. 61.
    Offield MF, Jetton JL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BLM, Wright CVE: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.PubMedGoogle Scholar
  62. 62.
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15:106–110.PubMedGoogle Scholar
  63. 63.
    Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CVE: The role of the transcriptional regulator PTF1a in converting intestinal to pancreatic progenitors. Nat Genet 2002;32:128–134.PubMedGoogle Scholar
  64. 64.
    Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer PK: The bhlh protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998;12:3752–3763.PubMedGoogle Scholar
  65. 65.
    Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS: Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004;36:1301–1305.PubMedGoogle Scholar
  66. 66.
    Wells JM, Melton DA: Vertebrate endoderm development. Ann Rev Cell Dev Biol 1999;15:393–410.Google Scholar
  67. 67.
    Lewis SL, Tam PP: Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn 2006;235:2315–2329.PubMedGoogle Scholar
  68. 68.
    Tam PP, Khoo PL, Lewis SL, Bildsoe H, Wong N, Tsang TE, Gad JM, Robb L: Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation. Development 2007;134:251–260.PubMedGoogle Scholar
  69. 69.
    Tremblay KD, Hoodless PA, Bikoff EK, Robertson EJ: Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 2000;127:3079–3090.PubMedGoogle Scholar
  70. 70.
    Kumar M, Melton D: Pancreas specification: a budding question. Curr Opin Genet Dev 2003;13:401–407.PubMedGoogle Scholar
  71. 71.
    Nadauld LD, Sandoval IT, Chidester S, Yost HJ, Jones DA: Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. J Biol Chem 2004;279:51581–51589.PubMedGoogle Scholar
  72. 72.
    McLin VA, Rankin SA, Zorn AM: Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007;134:2207–2217.PubMedGoogle Scholar
  73. 73.
    Zorn AM, Butler K, Gurdon JB: Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 1999;209:282–297.PubMedGoogle Scholar
  74. 74.
    Zou D, Silvius D, Davenport J, Grifone R, Maire P, Xu PX: Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 2006;293:499–512.PubMedGoogle Scholar
  75. 75.
    Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL: Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 2007;134:2521–2531.PubMedGoogle Scholar
  76. 76.
    Minoo P, Su G, Drum H, Bringas P, Kimura S: Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 1999;209:60–71.PubMedGoogle Scholar
  77. 77.
    Beck F, Erler T, Russell A, James R: Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn 1995;204:219–227.PubMedGoogle Scholar
  78. 78.
    Beck F, Chawengsaksophak K, Luckett J, Giblett S, Tucci J, Brown J, Poulsom R, Jeffery R, Wright NA: A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice. Dev Biol 2003;255:399–406.PubMedGoogle Scholar
  79. 79.
    Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, Osawa H, Kaneko Y, Sugano K: Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 2002;294:470–479.PubMedGoogle Scholar
  80. 80.
    Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, Sackett SD, Kaestner KH: Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122:689–696.PubMedGoogle Scholar
  81. 81.
    Fukuda K, Yasugi S: The molecular mechanisms of stomach development in vertebrates. Dev Growth Differ 2005;47:375–382.PubMedGoogle Scholar
  82. 82.
    Roberts DJ: Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn 2000;219:109–120.PubMedGoogle Scholar
  83. 83.
    Wells JM, Melton DA: Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 2000;127:1563–1572.PubMedGoogle Scholar
  84. 84.
    Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM: FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2006;123:42–55.PubMedGoogle Scholar
  85. 85.
    Melhuish TA, Gallo CM, Wotton D: TGIF2 interacts with histone deacetylase 1 and represses transcription. J Biol Chem 2001;276:32109–32114.PubMedGoogle Scholar
  86. 86.
    Spagnoli FM, Brivanlou AH: The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 2008;135:451–461.PubMedGoogle Scholar
  87. 87.
    Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS: Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004;131:797–806.PubMedGoogle Scholar
  88. 88.
    Rossi JM, Dunn NR, Hogan BLM, Zaret KS: Distinct mesodermal signals, including bmps from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 2001;15:1998–2009.PubMedGoogle Scholar
  89. 89.
    Li H, Arber S, Jessell TM, Edlund H: Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 1999;23:67–70.PubMedGoogle Scholar
  90. 90.
    Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000;97:1607–1611.PubMedGoogle Scholar
  91. 91.
    Villasenor A, Chong DC, Cleaver O: Biphasic Ngn3 expression in the developing pancreas. Dev Dyn 2008;237:3270–3279.PubMedGoogle Scholar
  92. 92.
    Afouda BA, Ciau-Uitz A, Patient R: GATA4, 5 and 6 mediate tgfbeta maintenance of endodermal gene expression in Xenopus embryos. Development 2005;132:763–774.PubMedGoogle Scholar
  93. 93.
    Decker K, Goldman DC, Grasch CL, Sussel L: Gata6 is an important regulator of mouse pancreas development. Dev Biol 2006;298:415–429.PubMedGoogle Scholar
  94. 94.
    Watt AJ, Zhao R, Li J, Duncan SA: Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol 2007;7:37.PubMedGoogle Scholar
  95. 95.
    Kim SK, Hebrok M, Melton DA: Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.PubMedGoogle Scholar
  96. 96.
    Chen Y, Pan FC, Brandes N, Afelik S, Solter M, Pieler T: Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol 2004;271:144–160.PubMedGoogle Scholar
  97. 97.
    Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S: Lack of TCF2/vhnf1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA 2005;102:1490–1495.PubMedGoogle Scholar
  98. 98.
    Yee NS, Lorent K, Pack MA: Exocrine pancreas development in zebrafish. Devel Biol 2005;284:84–101.Google Scholar
  99. 99.
    Metzger RJ, Klein OD, Martin GR, Krasnow MA: The branching programme of mouse lung development. Nature 2008;453:745–750.PubMedGoogle Scholar
  100. 100.
    Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, Gilbert SF: Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995;50:229–245.PubMedGoogle Scholar
  101. 101.
    Costantini F: Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 2006;74:402–421.PubMedGoogle Scholar
  102. 102.
    Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W: Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005;57:26R–37R.PubMedGoogle Scholar
  103. 103.
    Puri S, Hebrok M: Dynamics of embryonic pancreas development using real-time imaging. Dev Biol 2007;306:82–93.PubMedGoogle Scholar
  104. 104.
    Clark WR, Rutter WJ: Synthesis and accumulation of insulin in the fetal rat pancreas. Dev Biol 1972;29:468–481.PubMedGoogle Scholar
  105. 105.
    Kemp JD, Walther BT, Rutter WJ: Protein synthesis during the secondary developmental transition of the embryonic rat pancreas. J Biol Chem 1972;247:3941–3952.PubMedGoogle Scholar
  106. 106.
    Rutter WJ, Kemp JD, Bradshaw WS, Clark WR, Ronzio RA, Sanders TG: Regulation of specific protein synthesis in cytodifferentiation. J Cell Physiol 1968;72:1–18.PubMedGoogle Scholar
  107. 107.
    Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC: Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 2008;51:285–297.PubMedGoogle Scholar
  108. 108.
    Herrera PL: Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000;127:2317–2322.PubMedGoogle Scholar
  109. 109.
    Gu G, Dubauskaite J, Melton DA: Direct evidence for the pancreatic lineage: NGN3 + cells are islet progenitors and are distinct from duct progenitors. Development 2002;129:2447–2457.PubMedGoogle Scholar
  110. 110.
    Hara A, Kadoya Y, Kojima I, Yamashina S: Rat pancreatic islet is formed by unification of multiple endocrine cell clusters. Dev Dyn 2007;236:3451–3458.PubMedGoogle Scholar
  111. 111.
    Larsson LI: On the development of the islets of Langerhans. Microsc Res Tech 1998;43:284–291.PubMedGoogle Scholar
  112. 112.
    Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA: Beta cell differentiation during early human pancreas development. J Endocr 2004;181:11–23.PubMedGoogle Scholar
  113. 113.
    Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P: Early pattern of differentiation in the human pancreas. Diabetes 2000;49:225–232.PubMedGoogle Scholar
  114. 114.
    Golosow N, Grobstein C: Epitheliomesenchymal interaction in pancreatic morphogenesis. Devel Biol 1962;4:242–255.Google Scholar
  115. 115.
    Wessells NK, Cohen JH: Early pancreas organogenesis: Morphogenesis, tissue interactions, and mass effects. Devel Biol 1967;15:237–270.Google Scholar
  116. 116.
    Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debas HT: Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996;122:439–447.PubMedGoogle Scholar
  117. 117.
    Miralles F, Czernichow P, Scharfmann R: Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 1998;125:1017–1024.PubMedGoogle Scholar
  118. 118.
    Ronzio RA, Rutter WJ: Effects of a partially purified factor from chick embryos on macromolecular synthesis of embryonic pancreatic epithelia. Devel Biol 1971;30:307–320.Google Scholar
  119. 119.
    Oliver-Krasinski JM, Stoffers DA: On the origin of the beta cell. Genes Dev 2008;22:1998–2021.PubMedGoogle Scholar
  120. 120.
    Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G: Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 1998;17:1642–1655.PubMedGoogle Scholar
  121. 121.
    Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C: Fibroblast growth factor receptor 2-iiib acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 2001;231:47–62.PubMedGoogle Scholar
  122. 122.
    Hart A, Papadopoulou S, Edlund H: Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn 2003;228:185–193.PubMedGoogle Scholar
  123. 123.
    Norgaard GA, Jensen JN, Jensen J: FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 2003;264:323–338.PubMedGoogle Scholar
  124. 124.
    Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R: The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 2006;55:582–589.PubMedGoogle Scholar
  125. 125.
    Piper K, Ball SG, Keeling JW, Mansoor S, Wilson DI, Hanley NA: Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mech Dev 2002;116:223–226.PubMedGoogle Scholar
  126. 126.
    Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J: Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 2005;128:728–741.PubMedGoogle Scholar
  127. 127.
    Hale MA, Kagami H, Shi L, Holland AM, Elsasser HP, Hammer RE, MacDonald RJ: The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Devel Biol 2005;286:225–237.Google Scholar
  128. 128.
    Esni F, Stoffers DA, Takeuchi T, Leach SD: Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech Dev 2004;121:15–25.PubMedGoogle Scholar
  129. 129.
    Beres TM, Masui T, Swift GH, Shi L, Henke RM, MacDonald RJ: PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 2006;26:117–130.PubMedGoogle Scholar
  130. 130.
    Rall LB, Pictet RL, Williams RH, Rutter WJ: Early differentiation of glucagon-producing cells in embryonic pancreas: a possible developmental role for glucagon. Proc Natl Acad Sci USA 1973;70:3478–3482.PubMedGoogle Scholar
  131. 131.
    Wessells NK: DNA synthesis, mitosis and differentiation in pancreatic acinar cells in vitro. J Cell Biol 1964;20:415–433.PubMedGoogle Scholar
  132. 132.
    Nakhai H, Siveke JT, Mendoza-Torres L, Schmid RM: Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 2008;135:3191–3196.PubMedGoogle Scholar
  133. 133.
    Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A: Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 2007;12:457–465.PubMedGoogle Scholar
  134. 134.
    Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS: Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000;127:3533–3542.PubMedGoogle Scholar
  135. 135.
    Masui M, Swift GH, Hale MA, Meredith D, Johnson JE, MacDonald RJ: Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 2008;28:5458–5468, Accepted for publication.PubMedGoogle Scholar
  136. 136.
    Fujitani Y, Fujitani S, Boyer DF, Gannon M, Kawaguchi Y, Ray M, Shiota M, Stein RW, Magnuson MA, Wright CVE: Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev 2006;20:253–266.PubMedGoogle Scholar
  137. 137.
    Hald J, Hjorth P, German MS, Madsen OD, Serup P, Jensen J: Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Devel Biol 2003;260:426–437.Google Scholar
  138. 138.
    Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X, MacDonald RJ, Civin CI, Real FX, Pack MA, Ball DW, Leach SD: Notch inhibits Ptf1a function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 2004;131:4213–4224.PubMedGoogle Scholar
  139. 139.
    Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Mathews RP, Pack MA: Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multiorgan defects compatible with an Alagille syndrome phenocopy. Development 2004;131:5753–5766.PubMedGoogle Scholar
  140. 140.
    Goessling W, North TE, Lord AM, Ceol C, Lee S, Weidinger G, Bourque C, Strijbosch R, Haramis AP, Puder M, Clevers H, Moon RT, Zon LI: APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Devel Biol 2008;305:epub. doi:10.1016/j.ydbio.2008.05.526.Google Scholar
  141. 141.
    Servitja JM, Ferrer J: Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 2004;47:597–613.PubMedGoogle Scholar
  142. 142.
    Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, Bornkamm GW, Honjo T: RBP-L, a transcription factor related to RBP-Jk. Mol Cell Biol 1997;17:2679–2687.PubMedGoogle Scholar
  143. 143.
    Stathopoulos A, Levine M: Genomic regulatory networks and animal development. Dev Cell 2005;9:449–462.PubMedGoogle Scholar
  144. 144.
    Pin CL, Bonvissuto AC, Konieczny SF: Mist1 expression is a common link among serous exocrine cells exhibiting regulated exocytosis. Anat Rec 2000;259:157–167.PubMedGoogle Scholar
  145. 145.
    Pin CL, Rukstalis JM, Johnson C, Konieczny SF: The bhlh transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 2001;155:519–530.PubMedGoogle Scholar
  146. 146.
    Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF: Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol 2004;24:2673–2681.PubMedGoogle Scholar
  147. 147.
    Luo X, Shin DM, Wang X, Konieczny SF, Muallem S: Aberrant localization of intracellular organelles, Ca2 + signaling, and exocytosis in Mist1 null mice. J Biol Chem 2005;280:12668–12675.PubMedGoogle Scholar
  148. 148.
    Rukstalis JM, Kowalik A, Zhu L, Lidington D, Pin CL, Konieczny SF: Exocrine specific expression of Connexin32 is dependent on the basic helix-loop-helix transcription factor Mist1. J Cell Sci 2003;116:3315–3325.PubMedGoogle Scholar
  149. 149.
    Ketola I, Otonkoski T, Pulkkinen MA, Niemi H, Palgi J, Jacobsen CM, Wilson DB, Heikinheimo M: Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol 2004;226:51–57.PubMedGoogle Scholar
  150. 150.
    Labelle-Dumais C, Jacob-Wagner M, Pare JF, Belanger L, Dufort D: Nuclear receptor NR5A2 is required for proper primitive streak morphogenesis. Dev Dyn 2006;235:3359–3369.PubMedGoogle Scholar
  151. 151.
    Fayard E, Auwerx J, Schoonjans K: LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004;14:250–260.PubMedGoogle Scholar
  152. 152.
    Lee YK, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, Goodwin B, Hammer RE, Mangelsdorf DJ, Kliewer SA: Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 2008;22:1345–1356.PubMedGoogle Scholar
  153. 153.
    Annicotte JS, Fayard E, Swift GH, Selander L, Edlund H, Tanaka T, Kodama T, Schoonjans K, Auwerx J: Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 2003;23.Google Scholar
  154. 154.
    Wang J, Kilic G, Aydin M, Burke Z, Oliver G, Sosa-Pineda B: Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Devel Biol 2005;286:182–194.Google Scholar
  155. 155.
    Liu YW, Gao W, Teh HL, Tan JH, Chan WK: Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 2003;23:7243–7255.PubMedGoogle Scholar
  156. 156.
    Ashizawa N, Endoh H, Hidaka K, Watanabe M, Fukumoto S: Three-dimensional structure of the rat pancreatic duct in normal and inflammated pancreas. Microsc Res Tech 1997;37:543–556.PubMedGoogle Scholar
  157. 157.
    Githens S: Development and differentiation of pancreatic duct epithelium. In Lebenthal (ed.). E Gastrointestinal Development. New York: Raven Press, 1989, pp.669–683.Google Scholar
  158. 158.
    Pierreux CE, Poll AV, Kemp CR, Clotman F, Maestro MA, Cordi S, Ferrer J, Leyns L, Rousseau GG, Lemaigre FP: The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 2006;130:532–541.PubMedGoogle Scholar
  159. 159.
    Watanabe M, Muramatsu T, Shirane H, Ugai K: Discrete Distribution of binding sites for Dolichos biflorus agglutinin (DBA) and for peanut agglutinin (PNA) in mouse organ tissues. J Histochem Cytochem 1981;29:779–780.PubMedGoogle Scholar
  160. 160.
    Sumazaki R, NShiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, Nakauchi H, Kageyama R, Matsui A: Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet 2004;36:83–87.PubMedGoogle Scholar
  161. 161.
    Eberhard D, Tosh D, Slack JM: Origin of pancreatic endocrine cells from biliary duct epithelium. Cell Mol Life Sci 2008;65:3467–3480.PubMedGoogle Scholar
  162. 162.
    Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP: The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002;129:1819–1828.PubMedGoogle Scholar
  163. 163.
    Maestro MA, Boj SF, Luco RF, Pierreux CE, Cabedo J, Servitja JM, German MS, Rousseau GG, Lemaigre FP, Ferrer J: Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Human Mol Gen 2003;12:3307–3314.Google Scholar
  164. 164.
    Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, Madsen OD, Carmeliet P, Dewerchin M, Collen D, Rousseau GG, Lemaigre FP: Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 2000;20:4445–4454.PubMedGoogle Scholar
  165. 165.
    Cano DA, Murcia NS, Pazour GJ, Hebrok M: Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 2004;131:3457–3467.PubMedGoogle Scholar
  166. 166.
    Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, Mirmira RG, German MS: Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 2001;50:928–936.PubMedGoogle Scholar
  167. 167.
    Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS: Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 2003;278:38254–38259.PubMedGoogle Scholar
  168. 168.
    Gasa R, Mrejen C, Leachman N, Otten M, Barnes M, Wang J, Chakrabarti S, Mirmira R, German M: Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci USA 2004;101:13245–13250.PubMedGoogle Scholar
  169. 169.
    Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ: Regulation of the pancreatic islet-specific gene BETA2 (neurod) by neurogenin 3. Mol Cell Biol 2000;20:3292–3307.PubMedGoogle Scholar
  170. 170.
    Collombat P, Hecksher-Sorensen J, Serup P, Mansouri A: Specifying pancreatic endocrine cell fates. Mech Dev 2006;123:501–512.PubMedGoogle Scholar
  171. 171.
    Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P: Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003;17:2591–3603.PubMedGoogle Scholar
  172. 172.
    Collombat P, Hecksher-Sorensen J, Broccoli V, Krull J, Ponte I, Mundiger T, Smith J, Gruss P, Serup P, Mansouri A: The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development 2005;132:2969–2980.PubMedGoogle Scholar
  173. 173.
    Artner I, Hang Y, Guo M, Gu G, Stein R: Mafa is a dedicated activator of the insulin gene in vivo. J Endocrinol 2008;198:271–279.PubMedGoogle Scholar
  174. 174.
    Tweedie E, Artner I, Crawford L, Poffenberger G, Thorens B, Stein R, Powers AC, Gannon M: Maintenance of hepatic nuclear factor 6 in postnatal islets impairs terminal differentiation and function of beta-cells. Diabetes 2006;55:3264–3270.PubMedGoogle Scholar
  175. 175.
    Raum JC, Gerrish K, Artner I, Henderson E, Guo M, Sussel L, Schisler JC, Newgard CB, Stein R: Foxa2, Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafa expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site. Mol Cell Biol 2006;26:5735–5743.PubMedGoogle Scholar
  176. 176.
    Vanhoose AM, Samaras S, Artner I, Henderson E, Hang Y, Stein R: Mafa and mafb regulate Pdx1 transcription through the Area II control region in pancreatic beta cells. J Biol Chem 2008;283:22612–22619.PubMedGoogle Scholar
  177. 177.
    Wilson ME, Scheel D, German MS: Gene expression cascades in pancreatic development. Mech Dev 2003;120:65–80.PubMedGoogle Scholar
  178. 178.
    Murtaugh LC, Stanger BZ, Kwan DM, Melton DA: Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 2003;100:14920–14925.PubMedGoogle Scholar
  179. 179.
    Shiozaki S, Tajima T, Zhang YQ, Furukawa M, Nakazato Y, Kojima I: Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochimica et biophysica acta 1999;1450:1–11.PubMedGoogle Scholar
  180. 180.
    Dichmann DS, Yassin H, Serup P: Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn 2006;235:3016–3025.PubMedGoogle Scholar
  181. 181.
    Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK: GDF11 modulates NGN3 + islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development 2004;131:6163–6174.PubMedGoogle Scholar
  182. 182.
    Kleeff J, Friess H, Simon P, Susmallian S, Buchler P, Zimmermann A, Buchler MW, Korc M: Overexpression of Smad2 and colocalization with TGF-beta1 in human pancreatic cancer. Dig Dis Sci 1999;44:1793–1802.PubMedGoogle Scholar
  183. 183.
    Shook D, Keller R: Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351–1383.PubMedGoogle Scholar
  184. 184.
    del Barrio MG, Nieto MA: Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 2002;129:1583–1593.PubMedGoogle Scholar
  185. 185.
    Katoh M, Katoh M: Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 2006;5:1059–1064.PubMedGoogle Scholar
  186. 186.
    Gotz M, Huttner WB: The cell biology of neurogenesis. Nature Rev 2005;6:777–788.Google Scholar
  187. 187.
    Fischer EG, Lager DJ: Anti-glomerular basement membrane glomerulonephritis: a morphologic study of 80 cases. Am J Clin Pathol 2006;125:445–450.PubMedGoogle Scholar
  188. 188.
    Ahlgren U, Jonsson J, Edlund H: The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996;122:1409–1416.PubMedGoogle Scholar
  189. 189.
    Wilson ME, Kalamaras JA, German MS: Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 2002;115:171–176.PubMedGoogle Scholar
  190. 190.
    Stefan Y, Grasso S, Perrelet A, Orci L: The pancreatic polypeptide-rich lobe of the human pancreas: definitive identification of its derivation from the ventral pancreatic primordium. Diabetologia 1982;23:141–142.PubMedGoogle Scholar
  191. 191.
    Orci L: Macro- and micro-domains in the endocrine pancreas. Diabetes 1982;31:538–565.PubMedGoogle Scholar
  192. 192.
    Bonner-Weir S: Islets of Langerhans: morphology and postnatal growth. In Joslin’s Diabetes Mellitus, 14th edn. CR Kahn, RJ Jacobson, AM Jacobson, GC Weir, EL King (ed.). Philadelphia, PA: Lippincott Willilams & Wilkins, 2004, pp. 41–52.Google Scholar
  193. 193.
    Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H: Beta-cell specific inactivation of the mouse Ipf1/Pdx1 gene results in impaired glucose transporter expression and late onset diabetes. Genes Dev 1998;12:1763–1768.PubMedGoogle Scholar
  194. 194.
    Hart AW, Baeza N, Apelqvist A, Edlund H: Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 2000;408:864–868.PubMedGoogle Scholar
  195. 195.
    Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H: The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 2005;1:245–258.PubMedGoogle Scholar
  196. 196.
    Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y: Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 2002;51:114–123.PubMedGoogle Scholar
  197. 197.
    Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H: BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 2007;5:207–219.PubMedGoogle Scholar
  198. 198.
    Gannon M, Ray MK, Van Zee K, Rausa F, Costa RH, Wright CV: Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function. Development 2000;127:2883–2895.PubMedGoogle Scholar
  199. 199.
    Doyle MJ, Loomis ZL, Sussel L: Nkx2.2-repressor activity is sufficient to specify alpha-cells and a small number of beta-cells in the pancreatic islet. Development 2007;134:515–523.PubMedGoogle Scholar
  200. 200.
    Mitchell SM, Frayling TM: The role of transcription factors in maturity-onset diabetes of the young. Mol Genet Metab 2002;77:35–43.PubMedGoogle Scholar
  201. 201.
    Ghaneh P, Costello E, Neoptolemos JP: Biology and management of pancreatic cancer. Gut 2007;56:1134–1152.PubMedGoogle Scholar
  202. 202.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008;455:627–632.PubMedGoogle Scholar
  203. 203.
    Barolo S, Posakony JW: Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002;16:1167–1181.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ondine Cleaver
    • 1
  • Raymond J. MacDonald
    • 1
  1. 1.Department of Molecular BiologyThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations