Developments in Chemoradiation for Advanced Pancreatic Cancer

  • Stephen H. Settle
  • Jeffrey J. Meyer
  • Christopher H. Crane
Reference work entry


The use of chemoradiation for the treatment of locally advanced pancreatic cancer is controversial. Results from randomized trials comparing an initial strategy of chemotherapy to one with chemoradiation are mixed. Interest remains high in developing new and innovative systemic and locoregional treatment approaches to the treatment of pancreatic adenocarcinoma. Technological advances in radiotherapy delivery have been aimed at improving the therapeutic ratio, maximizing locoregional control while minimizing acute and late normal tissue toxicities, often enabling radiation dose escalation. The rationale for the use of radiation therapy and the application of these technological advances in locally advanced pancreatic cancer as well as the most recent data combining novel targeted agent with radiation will be discussed in this chapter.


Pancreatic Cancer Dose Escalation Bragg Peak Advanced Pancreatic Cancer Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Crane has received research support by Genentech and Bristol Meyers Squibb and honoraria from Roche. This manuscript supported in part by grant CA16672 from the National Cancer Institute, Department of Health and Human Services


  1. 1.
    Chauffert B, Mornex F, Bonnetain F, et al.: Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic caner. Definitive results of the 2000–01 FFCD/SFRO study. Ann Oncol 2008;19(9):1592–1599.CrossRefPubMedGoogle Scholar
  2. 2.
    Klaassen DJ, MacIntyre JM, Catton GE, et al.: Treatment of locally unresectable cancer of the stomach and pancreas: A randomized comparison of 5-fluorouracil alone with radiation plus concurrent and maintenance 5-fluorouracil-an Eastern Cooperative Oncology Group study. J Clin Oncol 1985;3:373–378.PubMedGoogle Scholar
  3. 3.
    Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. Gastrointestinal Tumor Study Group. J Nat Cancer Inst 1988;80:751–755.Google Scholar
  4. 4.
    Loehrer P, Powell M, Cardenes H, et al.: A randomized phase III study of gemcitabine in combination with radiation therapy versus gemcitabine alone in patients with localized, unresectable pancreatic cancer: E4201. J Clin Oncol 2008;26:May 20 suppl; abstr 4506.Google Scholar
  5. 5.
    Crane CH, Ellis LM, Abbruzzese JL, et al.: Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 2006;24:1145–1151.CrossRefPubMedGoogle Scholar
  6. 6.
    Ko AH, Quivey JM, Venook AP, et al.: A phase II study of fixed-dose rate gemcitabine plus low-dose cisplatin followed by consolidative chemoradiation for locally advanced pancreatic cancer. Int J Radiation Oncol, Biol, Phys 2007;68:809–816.CrossRefGoogle Scholar
  7. 7.
    Crane CH ea: Unpublished, 2008.Google Scholar
  8. 8.
    Crane CH, Winter K, Regine W, et al.: A Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer. IJROBP 2007;69:S77, Abst 136.Google Scholar
  9. 9.
    Rich T, Harris J, Abrams R, et al.: Phase II study of external irradiation and weekly paclitaxel for nonmetastatic, unresectable pancreatic cancer: RTOG-98-12. Am J Clin Oncol 2004;27:51–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Rich T, Myerson R, Harris J, et al.: A randomized phase II trial of weekly gemcitabine (G), paclitaxel (P), and external irradiation followed by the farnesyl transferase inhibitor R115777 (NSC#702818) for locally advanced pancreatic cancer (RTOG 0020). [Proceedings of the 2006 Gastrointestinal Cancers Symposium, San Francisco, CA:A-121, 2006.Google Scholar
  11. 11.
    Willett CG, Fernandez del Castillo C, Shih HA, et al.: Long-term results of Intraoperative Electron Beam Irradiation (IOERT) for patients with unresectable pancreatic cancer. Ann Surg 2005;241:295–299.CrossRefPubMedGoogle Scholar
  12. 12.
    A multi-institutional comparative trial of radiation therapy alone and in combination with 5-fluorouracil for locally unresectable pancreatic carcinoma. The Gastrointestinal Tumor Study Group. Ann Surg 1979;189:205–208.Google Scholar
  13. 13.
    Moertel CG, Childs DS, Jr., Reitemeier RJ, et al.: Combined 5-fluorouracil and supervoltage radiation therapy of locally unresectable gastrointestinal cancer. Lancet 1969;2:865–867.CrossRefPubMedGoogle Scholar
  14. 14.
    Poplin E, Levy D, Berlin J, et al.: Phase III trial of gemcitabine (30-minute infusion) versus gemcitabine (fixed-dose-rate infusion[FDR]) versus gemcitabine + oxaliplatin(GEMOX) in patients with advanced pancreatic cancer (E6201). J Clin Oncol. In ASCO Annual Meeting Proceedings Part I. 24: LBA4004, 2006.Google Scholar
  15. 15.
    Wolff RA, Evans DB, Gravel DM, et al.: Phase I trial of gemcitabine combined with radiation for the treatment of locally advanced pancreatic adenocarcinoma. Clin Cancer Res 2001;7:2246–2253.PubMedGoogle Scholar
  16. 16.
    Pipas JM, Mitchell SE, Barth RJ, et al.: Phase I study of twice-weekly gemcitabine and concomitant external-beam radiotherapy in patients with adenocarcinoma of the pancreas. Int J Radiat Oncol Biol Phys 2001;50:1317–1322.CrossRefPubMedGoogle Scholar
  17. 17.
    McGinn CJ, Zalupski MM, Shureiqi I, et al.: Phase I trial of radiation dose escalation with concurrent weekly full-dose gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 2001;19:4202–4208.PubMedGoogle Scholar
  18. 18.
    Blackstock AW, Bernard SA, Richards F, et al.: Phase I trial of twice-weekly gemcitabine and concurrent radiation in patients with advanced pancreatic cancer. J Clin Oncol 1999;17:2208–2212.PubMedGoogle Scholar
  19. 19.
    Breslin TM, Hess KR, Harbison DB, et al.: Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: treatment variables and survival duration. Ann Sur Oncol 2001;8:123–132.CrossRefGoogle Scholar
  20. 20.
    Cartwright TH, Cohn A, Varkey JA, et al.: Phase II study of oral capecitabine in patients with advanced or metastatic pancreatic cancer. J Clin Oncol 2002;20:160–164.CrossRefPubMedGoogle Scholar
  21. 21.
    Gorski DH, Beckett MA, Jaskowiak NT, et al.: Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999;59:3374–3378.PubMedGoogle Scholar
  22. 22.
    Wey J, Fan F, Gray M, et al.: Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 2005;104:427–438.CrossRefPubMedGoogle Scholar
  23. 23.
    Jain RK Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Iannitti DMD, Dipetrillo TMD, Akerman PMD, et al.: Erlotinib and chemoradiation followed by maintenance erlotinib for locally advanced pancreatic cancer: A Phase I study. Am J Clin Oncol December 2005;28:570–575.CrossRefGoogle Scholar
  25. 25.
    Duffy A, Kortmansky J, Schwartz GK, et al.: A phase I study of erlotinib in combination with gemcitabine and radiation in locally advanced, non-operable pancreatic adenocarcinoma. Ann Oncol 2008;19:86–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Posner M, Chang K, Rosemurgy A, et al.: Multi-center phase II/III randomized controlled clinical trial using TNFerade combined with chemoradiation in patients with locally advanced pancreatic cancer (LAPC). In ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2006;ASCO Annual Meeting Proceedings Part I. 25:4518, 2007.Google Scholar
  27. 27.
    Merchant N, Berlin J Past and future of pancreas cancer: are we ready to move forward together? J Clin Oncol 2008;26:3478–3480.CrossRefPubMedGoogle Scholar
  28. 28.
    Murphy MJ Tracking moving organs in real time. Semin Radiat Oncol 2004;14:91–100.CrossRefPubMedGoogle Scholar
  29. 29.
    Ahmadu-Suka F, Gillette EL, Withrow SJ, et al.: Pathologic response of the pancreas and duodenum to experimental intraoperative irradiation. Int J Radiat Oncol Biol Phys 1988;14:1197–204.CrossRefPubMedGoogle Scholar
  30. 30.
    Poulakos L, Elwell JH, Osborne JW, et al.: The prevalence and severity of late effects in normal rat duodenum following intraoperative irradiation. Int J Radiat Oncol Biol Phys 1990.18:841–8,CrossRefPubMedGoogle Scholar
  31. 31.
    Goldson AL, Ashaveri E, Espinoza MC, et al.: Single high dose intraoperative electrons for advanced stage pancreatic cancer: phase I pilot study. Int J Radiat Oncol Biol Phys 1981;7:869–874.CrossRefPubMedGoogle Scholar
  32. 32.
    Ceha HM, van Tienhoven G, Gouma DJ, et al.: Feasibility and efficacy of high dose conformal radiotherapy for patients with locally advanced pancreatic carcinoma. Cancer 2000;89:2222–2229.CrossRefPubMedGoogle Scholar
  33. 33.
    Hoyer M, Roed H, Sengelov L, et al.: Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiot Oncol 2005;76:48–53.CrossRefGoogle Scholar
  34. 34.
    Schellenberg D, Goodman K, Lee F, et al.: Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2008;72:678–686.Google Scholar
  35. 35.
    Garton GR, Gunderson LL, Nagorney DM, et al.: High-dose preoperative external beam and intraoperative irradiation for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 1993;27:1153–1157.CrossRefPubMedGoogle Scholar
  36. 36.
    Willett CG, Del Castillo CF, Shih HA, et al.: Long-term results of intraoperative electron beam irradiation (IOERT) for patients with unresectable pancreatic cancer. Ann Surg 2005;241:295–299.CrossRefPubMedGoogle Scholar
  37. 37.
    Zelefsky MJ, Chan H, Hunt M, et al.: Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 2006;176:1415–1419.CrossRefPubMedGoogle Scholar
  38. 38.
    Eisbruch A, Ship JA, Dawson LA, et al.: Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer. World J Surg 2003;27:832–837.CrossRefPubMedGoogle Scholar
  39. 39.
    Brown MW, Ning H, Arora B, et al.: A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma. Int J Radiat Oncol Biol Phys 2006;65:274–283.CrossRefPubMedGoogle Scholar
  40. 40.
    Spalding AC, Jee KW, Vineberg K, et al.: Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions. Med Phys 2007;34:521–529.CrossRefPubMedGoogle Scholar
  41. 41.
    Cheng SW, Wu LL, Ting AC, et al.: Irradiation-induced extracranial carotid stenosis in patients with head and neck malignancies. Am J Surg 1999;178:323–328.CrossRefPubMedGoogle Scholar
  42. 42.
    Lam WW, Leung SF, So NM, et al.: Incidence of carotid stenosis in nasopharyngeal carcinoma patients after radiotherapy. Cancer 2001;92:2357–2363.CrossRefPubMedGoogle Scholar
  43. 43.
    Lam WW, Liu KH, Leung SF, et al.: Sonographic characterisation of radiation-induced carotid artery stenosis. Cerebrovasc Dis 2002;13:168–173.CrossRefPubMedGoogle Scholar
  44. 44.
    Milano MT, Chmura SJ, Garofalo MC, et al.: Intensity-modulated radiotherapy in treatment of pancreatic and bile duct malignancies: toxicity and clinical outcome. Int J Radiat Oncol Biol Phys 2004;59:445–453.CrossRefPubMedGoogle Scholar
  45. 45.
    Ben-Josef E, Shields AF, Vaishampayan U, et al.: Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer. Int J Radiat Oncol Biol Phys 2004;59:454–459.CrossRefPubMedGoogle Scholar
  46. 46.
    Settle S, Crane C, Das P, et al.: Novel use of focal high-dose IMRT for borderline resectable pancreatic cancer. Proceedings of the 2008 GI Symposium:Abst #203, 2008.Google Scholar
  47. 47.
    Blomgren H, Lax I, Naslund I, et al.: Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 1995;34:861–870.CrossRefPubMedGoogle Scholar
  48. 48.
    Adler JR, Jr., Chang SD, Murphy MJ, et al.: The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997;69:124–128.CrossRefPubMedGoogle Scholar
  49. 49.
    Schweikard A, Glosser G, Bodduluri M, et al.: Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 2000;5:263–277.CrossRefPubMedGoogle Scholar
  50. 50.
    Chang BK, Timmerman RD Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol 2007;30:637–644.CrossRefPubMedGoogle Scholar
  51. 51.
    Moseley DJ, White EA, Wiltshire KL, et al.: Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 2007;67:942–953.CrossRefPubMedGoogle Scholar
  52. 52.
    Koong AC, Le QT, Ho A, et al.: Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2004;58:1017–1021.CrossRefPubMedGoogle Scholar
  53. 53.
    Chang DT, Schellenberg D, Shen J, et al.: Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 2009;115:665–672.Google Scholar
  54. 54.
    Koehler A, Preston W Protons in radiation therapy. Comparative dose distributions for protons, photons, and electrons. Radiology 1972;104:191–195.PubMedGoogle Scholar
  55. 55.
    Kramer M, Weyrather WL, Scholz M The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2003;2:427–436.PubMedGoogle Scholar
  56. 56.
    Wilson R Radiological use of fast protons. Radiology 1946;47:487–491.PubMedGoogle Scholar
  57. 57.
    Pedroni E, Bohringer T, Coray A, et al.: Initial experience of using an active beam delivery technique at PSI. Straglenther Onkol 1999;175:18–20.CrossRefGoogle Scholar
  58. 58.
    Slater J, Miller D, Archambeau J Development of a hospital-based proton beam treatment center. Int J Radiat Oncol Biol Phys 1988;14:761–765.CrossRefPubMedGoogle Scholar
  59. 59.
    Paganetti H, Nimierko A, Ancukiewicz M, et al.: Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002;53:407–421.CrossRefPubMedGoogle Scholar
  60. 60.
    Wilkens J, Oelfke U Direct comparison of biologically optimized spread-out bragg peaks for protons and carbon ions.. Int J Radiat Oncol Biol Phys 2008;70:262–266.CrossRefPubMedGoogle Scholar
  61. 61.
    Moyers MF, Miller DW, Bush DA, Slater JD.: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001;49: 1429–1438.Google Scholar
  62. 62.
    Hsiung-Stripp D, McDonough J, Masters H, et al.: Comparative treatment planning between proton and X-ray therapy in pancreatic cancer.. Med Dosim 2001;26:255–259.CrossRefPubMedGoogle Scholar
  63. 63.
    Zurlo A, Lomax A, Hoess A, et al.: The role of proton therapy in the treatment of large irradiation volumes: a comparative planning study of pancreatic and biliary tumors. 2000;48 1:277–288.Google Scholar
  64. 64.
    Kozak KR, Kachnic LA, Adams J, et al.: Dosimetric feasibility of hypofractionated proton radiotherapy for neoadjuvant pancreatic cancer treatment. Int J Radiat Oncol Biol Phys 2007;68:1557–1566.CrossRefPubMedGoogle Scholar
  65. 65.
    Linstadt D, Quivey JM, Castro JR, et al.: Comparison of helium-ion radiation therapy and split-course megavoltage irradiation for unresectable adenocarcinoma of the pancreas. Final report of a Northern California Oncology Group randomized prospective clinical trial. Radiology 1988;168:261–264.PubMedGoogle Scholar
  66. 66.
    Tsujii H, Mizoe J, Kamada T, et al.: Clinical results of carbon ion radiotherapy at NIRS. J Radiat Res (Tokyo) 2007;48 Suppl A 48:A1–A13.CrossRefGoogle Scholar
  67. 67.
    Moertel CG, Frytak S, Hahn RG, et al.: Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: The Gastrointestinal Tumor Study Group. Cancer 1981;48:1705–1710.CrossRefPubMedGoogle Scholar
  68. 68.
    Kindler HL, Niedzwiecki D, Hollis DR, et al.: A double-blind, placebo-controlled, randomized Phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): A preliminary analysis of Cancer and Leukemia Group B (CALGB) 80303. J Clin Oncol 2007;26:A108.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephen H. Settle
    • 1
  • Jeffrey J. Meyer
    • 1
  • Christopher H. Crane
    • 1
  1. 1.Department of Radiation OncologyU.T. M.D. Anderson Cancer CenterTXUSA

Personalised recommendations