Genetic Susceptibility and High Risk Groups for Pancreatic Cancer

  • William Greenhalf
  • John Neoptolemos
Reference work entry


Cancer develops because of a series of unfortunate events. The order of events defines a progression from normal cells through premalignant lesions to malignancy. A limited number of possible forms of progression are possible and initiation of this progression does not mean that a cancer will develop. The improbable events will have to happen in particular types of cells, quite probably at specific points in development. Cancer is a common disease only because the product of a large number of small probabilities is multiplied by the very large number of susceptible cells. The probability and consequences of mutation, epigenetic changes, infection, and other nonmalignant diseases are all determined by interaction between genotype and environment. On this basis many genes are involved in determining cancer risk; most of these have common allelic variants; subtle differences in the efficiency of these genes will impact on the probability of tumorigenic events. In combination, these will make large differences not just to the chance of developing cancer but also to the pathway that will lead to that cancer and the prognosis for the patient. This multigene effect is by far the most important element of genetic susceptibility, but it is unlikely to result in a significant family history of cancer. As pancreatic cancer is relatively uncommon, a family history spanning multiple generations is indicative of a rare (mutant) variant in a single gene. In reality, the consequence of inheriting such a high-risk allele will be dependent on a broader genetic context, and therefore, there is no such thing as a truly monogenic predisposition; but in certain families cancer does segregate with specific mutant alleles. In this chapter the way in which germline variation influences different stages of pancreatic cancer progression is discussed in order to explain why certain individuals should be considered as high risk. This has consequences for the management of a patient after cancer diagnosis but also for surveillance and screening, which will be covered in more detail in a separate chapter.


Pancreatic Cancer Familial Adenomatous Polyposis Preneoplastic Lesion Pancreatic Cancer Risk Hereditary Pancreatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Donehower LA: p53: guardian AND suppressor of longevity? Exp Gerontol 2005;40:7–9.PubMedGoogle Scholar
  2. 2.
    Dong LM, Potter JD, White E, et al.: Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 2008;299:2423–2436.PubMedGoogle Scholar
  3. 3.
    Easton DF, Pooley KA, Dunning AM, et al.: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;447:1087–1093.PubMedGoogle Scholar
  4. 4.
    Rao BK, Noor O, Thosani MK: Identical twins with primary cutaneous melanoma presenting at the same time and location. Am J Dermatopathol 2008;30:182–184.PubMedGoogle Scholar
  5. 5.
    Isaksson B, Jonsson F, Pedersen NL, et al.: Lifestyle factors and pancreatic cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer 2002;98:480–482.PubMedGoogle Scholar
  6. 6.
    Lichtenstein P, Holm NV, Verkasalo PK, et al.: Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000;343:78–85.PubMedGoogle Scholar
  7. 7.
    Grocock CJ, Vitone LJ, Harcus MJ, et al.: Familial pancreatic cancer: a review and latest advances. Adv Med Sci 2007;52:37–49.PubMedGoogle Scholar
  8. 8.
    Dayaram T, Marriott SJ: Effect of transforming viruses on molecular mechanisms associated with cancer. J Cell Physiol 2008;216:309–314.PubMedGoogle Scholar
  9. 9.
    Amieva MR, El-Omar EM: Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 2008;134:306–323.PubMedGoogle Scholar
  10. 10.
    Hussain SP: Inflammation and cancer: is aid aiding? Gastroenterology 2008;135:736–737.PubMedGoogle Scholar
  11. 11.
    Inoue M, Iwasaki M, Otani T, et al.: Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 2006;166:1871–1877.PubMedGoogle Scholar
  12. 12.
    Kuriki K, Hirose K, Tajima K: Diabetes and cancer risk for all and specific sites among Japanese men and women. Eur J Cancer Prev 2007;16:83–89.PubMedGoogle Scholar
  13. 13.
    Calton BA, Chang SC, Wright ME, et al.: History of diabetes mellitus and subsequent prostate cancer risk in the NIH-AARP Diet and Health Study. Cancer Causes Control 2007;18:493–503.PubMedGoogle Scholar
  14. 14.
    Gong Z, Neuhouser ML, Goodman PJ, et al.: Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2006;15:1977–1983.PubMedGoogle Scholar
  15. 15.
    Kasper JS, Giovannucci E: A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2006;15:2056–2062.PubMedGoogle Scholar
  16. 16.
    Zhou J, Smith DK, Lu L, et al.: A non-synonymous single nucleotide polymorphism in IFNAR1 affects susceptibility to chronic hepatitis B virus infection. J Viral Hepat 2008;16:45–52.PubMedGoogle Scholar
  17. 17.
    Reiner AP, Barber MJ, Guan Y, et al.: Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein. Am J Hum Genet 2008;82:1193–1201.PubMedGoogle Scholar
  18. 18.
    Yasuda K, Miyake K, Horikawa Y, et al.: Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008;40:1092–1097.PubMedGoogle Scholar
  19. 19.
    Chan PK, Cheung TH, Lin CK, et al.: Association between HLA-DRB1 polymorphism, high-risk HPV infection and cervical neoplasia in southern Chinese. J Med Virol 2007;79:970–976.PubMedGoogle Scholar
  20. 20.
    Kato I, van Doorn LJ, Canzian F, et al.: Host-bacterial interaction in the development of gastric precancerous lesions in a high risk population for gastric cancer in Venezuela. Int J Cancer 2006;119:1666–1671.PubMedGoogle Scholar
  21. 21.
    Garrity-Park MM, Loftus EV, Jr., Bryant SC, et al.: Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. Am J Gastroenterol 2008;103:407–415.PubMedGoogle Scholar
  22. 22.
    Sandhu MS, Luben R, Khaw KT: Self reported non-insulin dependent diabetes, family history, and risk of prevalent colorectal cancer: population based, cross sectional study. J Epidemiol Community Health 2001;55:804–805.PubMedGoogle Scholar
  23. 23.
    Gudmundsson J, Sulem P, Steinthorsdottir V, et al.: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007;39:977–983.PubMedGoogle Scholar
  24. 24.
    Vogelstein B, Fearon ER, Hamilton SR, et al.: Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525–532.PubMedGoogle Scholar
  25. 25.
    Maitra A, Adsay NV, Argani P, et al.: Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 2003;16:902–912.PubMedGoogle Scholar
  26. 26.
    Biankin AV, Kench JG, Dijkman FP, et al.: Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. Pathology 2003;35:14–24.PubMedGoogle Scholar
  27. 27.
    Wilentz RE, Geradts J, Maynard R, et al.: Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 1998;58:4740–4744.PubMedGoogle Scholar
  28. 28.
    van Heek NT, Meeker AK, Kern SE, et al.: Telomere Shortening Is Nearly Universal in Pancreatic Intraepithelial Neoplasia. Am J Pathol 2002;161:1541–1547.PubMedGoogle Scholar
  29. 29.
    Chin L, Artandi SE, Shen Q, et al.: p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999;97:527–538.PubMedGoogle Scholar
  30. 30.
    Raynaud CM, Sabatier L, Philipot O, et al.: Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Crit Rev Oncol Hematol 2008;66:99–117.PubMedGoogle Scholar
  31. 31.
    Hiyama E, Kodama T, Shinbara K, et al.: Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res 1997;57:326–331.PubMedGoogle Scholar
  32. 32.
    Hahn WC, Counter CM, Lundberg AS, et al.: Creation of human tumour cells with defined genetic elements. Nature 1999;400:464–468.PubMedGoogle Scholar
  33. 33.
    Hahn WC, Dessain SK, Brooks MW, et al.: Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002;22:2111–2123.PubMedGoogle Scholar
  34. 34.
    Hingorani SR, Petricoin EF, Maitra A, et al.: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437–450.PubMedGoogle Scholar
  35. 35.
    Hingorani SR, Wang L, Multani AS, et al.: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005;7:469–483.PubMedGoogle Scholar
  36. 36.
    Tuveson DA, Shaw AT, Willis NA, et al.: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 2004;5:375–387.PubMedGoogle Scholar
  37. 37.
    Mulligan LM, Eng C, Healey CS, et al.: Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 1994;6:70–74.PubMedGoogle Scholar
  38. 38.
    Le Hir H, Charlet-Berguerand N, de Franciscis V, et al.: 5′-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 2002;63:84–91.PubMedGoogle Scholar
  39. 39.
    Le Hir H, Charlet-Berguerand N, Gimenez-Roqueplo A, et al.: Relative expression of the RET9 and RET51 isoforms in human pheochromocytomas. Oncology 2000;58:311–318.PubMedGoogle Scholar
  40. 40.
    Pogue-Geile KL, Chen R, Bronner MP, et al.: Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 2006;3:e516.PubMedGoogle Scholar
  41. 41.
    Zogopoulos G, Rothenmund H, Eppel A, et al.: The P239S palladin variant does not account for a significant fraction of hereditary or early onset pancreas cancer. Hum Genet 2007;121:635–637.PubMedGoogle Scholar
  42. 42.
    Slater E, Amrillaeva V, Fendrich V, et al.: Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Med 2007;4:e164.PubMedGoogle Scholar
  43. 43.
    Testa JR, Hino O: Tumor suppressor genes and the two-hit model of recessive oncogenesis: celebrating Alfred Knudson’s 80th birthday. Genes Chromosomes Cancer 2003;38:286–287.PubMedGoogle Scholar
  44. 44.
    Lynch HT, Brand RE, Hogg D, et al.: Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer 2002;94:84–96.PubMedGoogle Scholar
  45. 45.
    Groen EJ, Roos A, Muntinghe FL, et al.: Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol 2008;15:2439–2450.PubMedGoogle Scholar
  46. 46.
    Latchford A, Greenhalf W, Vitone LJ, et al.: Peutz-Jeghers syndrome and screening for pancreatic cancer. Br J Surg 2006;93:1446–1455.PubMedGoogle Scholar
  47. 47.
    Vahteristo P, Tamminen A, Karvinen P, et al.: p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001;61:5718–5722.PubMedGoogle Scholar
  48. 48.
    Wood LD, Parsons DW, Jones S, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007;318:1108–1113.PubMedGoogle Scholar
  49. 49.
    Jones S, Zhang X, Parsons DW, et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801–1806.PubMedGoogle Scholar
  50. 50.
    Trenz K, Lugowski S, Jahrsdorfer U, et al.: Enhanced sensitivity of peripheral blood lymphocytes from women carrying a BRCA1 mutation towards the mutagenic effects of various cytostatics. Mutat Res 2003;544:279–288.PubMedGoogle Scholar
  51. 51.
    Trenz K, Rothfuss A, Schutz P, et al.: Mutagen sensitivity of peripheral blood from women carrying a BRCA1 or BRCA2 mutation. Mutat Res 2002;500:89–96.PubMedGoogle Scholar
  52. 52.
    Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999;81:214–218.PubMedGoogle Scholar
  53. 53.
    Venkitaraman AR: Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002;108:171–182.PubMedGoogle Scholar
  54. 54.
    Jiao L, Bondy ML, Hassan MM, et al.: Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. Cancer Detect Prev 2006;30:284–291.PubMedGoogle Scholar
  55. 55.
    Couch FJ, Johnson MR, Rabe K, et al.: Germ line Fanconi anemia complementation group C mutations and pancreatic cancer. Cancer Res 2005;65:383–386.PubMedGoogle Scholar
  56. 56.
    Rogers CD, van der Heijden MS, Brune K, et al.: The genetics of FANCC and FANCG in familial pancreatic cancer. Cancer Biol Ther 2004;3:167–169.PubMedGoogle Scholar
  57. 57.
    van der Heijden MS, Yeo CJ, Hruban RH, et al.: Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 2003;63:2585–2588.PubMedGoogle Scholar
  58. 58.
    Hahn SA, Greenhalf B, Ellis I, et al.: BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003;95:214–221.PubMedGoogle Scholar
  59. 59.
    Lynch HT, Lynch JF: Hereditary nonpolyposis colorectal cancer. Semin Surg Oncol 2000;18:305–313.PubMedGoogle Scholar
  60. 60.
    Hisa T, Suda K, Nobukawa B, et al.: Distribution of intraductal lesions in small invasive ductal carcinoma of the pancreas. Pancreatology 2007;7:341–346.PubMedGoogle Scholar
  61. 61.
    Detlefsen S, Sipos B, Feyerabend B, et al.: Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch 2005;447:800–805.PubMedGoogle Scholar
  62. 62.
    Real FX, Cibrian-Uhalte E, Martinelli P: Pancreatic cancer development and progression: remodeling the model. Gastroenterology 2008;135:724–728.PubMedGoogle Scholar
  63. 63.
    Komori T, Ishikawa O, Ohigashi H, et al.: Invasive ductal adenocarcinoma of the remnant pancreatic body 9 years after resection of an intraductal papillary-mucinous carcinoma of the pancreatic head: a case report and comparison of DNA sequence in K-ras gene mutation. Jpn J Clin Oncol 2002;32:146–151.PubMedGoogle Scholar
  64. 64.
    Biankin AV, Kench JG, Biankin SA, et al.: Pancreatic intraepithelial neoplasia in association with intraductal papillary mucinous neoplasms of the pancreas: implications for disease progression and recurrence. Am J Surg Pathol 2004;28:1184–1192.PubMedGoogle Scholar
  65. 65.
    Bassi C, Sarr MG, Lillemoe KD, et al.: Natural history of intraductal papillary mucinous neoplasms (IPMN): current evidence and implications for management. J Gastrointest Surg 2008;12:645–650.PubMedGoogle Scholar
  66. 66.
    Hruban RH, Takaori K, Klimstra DS, et al.: An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2004;28:977–987.PubMedGoogle Scholar
  67. 67.
    Furukawa T, Kloppel G, Volkan Adsay N, et al.: Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 2005;447:794–799.PubMedGoogle Scholar
  68. 68.
    Sugiyama M, Suzuki Y, Abe N, et al.: Management of intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol 2008;43:181–185.PubMedGoogle Scholar
  69. 69.
    Uehara H, Nakaizumi A, Ishikawa O, et al.: Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. Gut 2008;57:1561–1565.PubMedGoogle Scholar
  70. 70.
    Wada K: p16 and p53 gene alterations and accumulations in the malignant evolution of intraductal papillary-mucinous tumors of the pancreas. J Hepatobiliary Pancreat Surg 2002;9:76–85.PubMedGoogle Scholar
  71. 71.
    Hashimoto Y, Murakami Y, Uemura K, et al.: Telomere shortening and telomerase expression during multistage carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas. J Gastrointest Surg 2008;12:17–28; discussion 9.PubMedGoogle Scholar
  72. 72.
    Sato N, Fukushima N, Hruban RH, et al.: CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 2008;21:238–244.PubMedGoogle Scholar
  73. 73.
    Sato N, Ueki T, Fukushima N, et al.: Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 2002;123:365–372.PubMedGoogle Scholar
  74. 74.
    Adsay NV, Merati K, Andea A, et al.: The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 2002;15:1087–1095.PubMedGoogle Scholar
  75. 75.
    Kloppel G, Luttges J: The pathology of ductal-type pancreatic carcinomas and pancreatic intraepithelial neoplasia: insights for clinicians. Curr Gastroenterol Rep 2004;6:111–118.PubMedGoogle Scholar
  76. 76.
    Brembeck FH, Schreiber FS, Deramaudt TB, et al.: The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 2003;63:2005–2009.PubMedGoogle Scholar
  77. 77.
    Grippo PJ, Nowlin PS, Demeure MJ, et al.: Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res 2003;63:2016–2019.PubMedGoogle Scholar
  78. 78.
    Tuveson DA, Zhu L, Gopinathan A, et al.: Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res 2006;66:242–247.PubMedGoogle Scholar
  79. 79.
    Guerra C, Schuhmacher AJ, Canamero M, et al.: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007;11:291–302.PubMedGoogle Scholar
  80. 80.
    Siveke JT, Einwachter H, Sipos B, et al.: Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 2007;12:266–279.PubMedGoogle Scholar
  81. 81.
    Stanger BZ, Stiles B, Lauwers GY, et al.: Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 2005;8:185–195.PubMedGoogle Scholar
  82. 82.
    Howes N, Lerch MM, Greenhalf W, et al.: Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004;2:252–261.PubMedGoogle Scholar
  83. 83.
    Threadgold J, Greenhalf W, Ellis I, et al.: The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 2002;50:675–681.PubMedGoogle Scholar
  84. 84.
    Mantovani A, Allavena P, Sica A, et al.: Cancer-related inflammation. Nature 2008;454:436–444.PubMedGoogle Scholar
  85. 85.
    Itzkowitz SH, Yio X: Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004;287:G7–G17.PubMedGoogle Scholar
  86. 86.
    Imagawa S, Yoshihara M, Ito M, et al.: Evaluation of gastric cancer risk using topography of histological gastritis: a large-scaled cross-sectional study. Dig Dis Sci 2008;53:1818–1823.PubMedGoogle Scholar
  87. 87.
    de Martel C, Llosa AE, Friedmana GD, et al.: Helicobacter pylori infection and development of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2008;17:1188–1194.PubMedGoogle Scholar
  88. 88.
    Lowenfels AB, Maisonneuve P, Cavallini G, et al.: Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993;328:1433–1437.PubMedGoogle Scholar
  89. 89.
    Malka D, Hammel P, Maire F, et al.: Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 2002;51:849–852.PubMedGoogle Scholar
  90. 90.
    Ghazale A, Chari S: Is autoimmune pancreatitis a risk factor for pancreatic cancer? Pancreas 2007;35:376.PubMedGoogle Scholar
  91. 91.
    Lowenfels AB, Maisonneuve P, DiMagno EP, et al.: Hereditary pancreatitis and the risk of pancreatic cancer. International hereditary pancreatitis study group. J Natl Cancer Inst 1997;89:442–446.PubMedGoogle Scholar
  92. 92.
    Rebours V, Boutron-Ruault MC, Schnee M, et al.: Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol 2008;103:111–119.PubMedGoogle Scholar
  93. 93.
    Sica A, Allavena P, Mantovani A: Cancer related inflammation: The macrophage connection. Cancer Lett 2008;267:204–215.PubMedGoogle Scholar
  94. 94.
    Manicone AM, McGuire JK: Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008;19:34–41.PubMedGoogle Scholar
  95. 95.
    Leung PS, Chan YC: Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal 2008;11:135–165.Google Scholar
  96. 96.
    Algul H, Treiber M, Lesina M, et al.: Mechanisms of disease: chronic inflammation and cancer in the pancreas – a potential role for pancreatic stellate cells? Nat Clin Pract 2007;4:454–462.Google Scholar
  97. 97.
    Miyamoto Y, Maitra A, Ghosh B, et al.: Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003;3:565–576.PubMedGoogle Scholar
  98. 98.
    Talamini G, Zamboni G, Salvia R, et al.: Intraductal papillary mucinous neoplasms and chronic pancreatitis. Pancreatology 2006;6:626–634.PubMedGoogle Scholar
  99. 99.
    Rosty C, Geradts J, Sato N, et al.: p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol 2003;27:1495–1501.PubMedGoogle Scholar
  100. 100.
    Siveke JT, Lubeseder-Martellato C, Lee M, et al.: Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 2008;134:544–555.PubMedGoogle Scholar
  101. 101.
    Bhanot U, Kohntop R, Hasel C, et al.: Evidence of Notch pathway activation in the ectatic ducts of chronic pancreatitis. J Pathol 2008;214:312–319.PubMedGoogle Scholar
  102. 102.
    Bockman DE: Transition to pancreatic cancer in response to carcinogen. Langenbecks Arch Surg 2008;393:557–560.PubMedGoogle Scholar
  103. 103.
    Esposito I, Seiler C, Bergmann F, et al.: Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment. Pancreas 2007;35:212–217.PubMedGoogle Scholar
  104. 104.
    Hruban RH, Adsay NV, Albores-Saavedra J, et al.: Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 2006;66:95–106.PubMedGoogle Scholar
  105. 105.
    Lillioja S, Mott DM, Spraul M, et al.: Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993;329:1988–1992.PubMedGoogle Scholar
  106. 106.
    Chari ST, Leibson CL, Rabe KG, et al.: Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005;129:504–511.PubMedGoogle Scholar
  107. 107.
    Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, et al.: Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 2005;92:2076–2083.PubMedGoogle Scholar
  108. 108.
    Wang F, Herrington M, Larsson J, et al.: The relationship between diabetes and pancreatic cancer. Mol Cancer 2003;2:4.PubMedGoogle Scholar
  109. 109.
    Silverman DT, Schiffman M, Everhart J, et al.: Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. Br J Cancer 1999;80:1830–1837.PubMedGoogle Scholar
  110. 110.
    Chari ST, Leibson CL, Rabe KG, et al.: Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 2008;134:95–101.PubMedGoogle Scholar
  111. 111.
    Stevens RJ, Roddam AW, Beral V: Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. Br J Cancer 2007;96:507–509.PubMedGoogle Scholar
  112. 112.
    Daneman D: Type 1 diabetes. Lancet 2006;367:847–858.PubMedGoogle Scholar
  113. 113.
    Meckler KA, Brentnall TA, Haggitt RC, et al.: Familial fibrocystic pancreatic atrophy with endocrine cell hyperplasia and pancreatic carcinoma. Am J Surg Pathol 2001;25:1047–1053.PubMedGoogle Scholar
  114. 114.
    Kleeff J, Beckhove P, Esposito I, et al.: Pancreatic cancer microenvironment. Int J Cancer 2007;121:699–705.PubMedGoogle Scholar
  115. 115.
    Bowker SL, Majumdar SR, Veugelers P, et al.: Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006;29:254–258.PubMedGoogle Scholar
  116. 116.
    Ding XZ, Fehsenfeld DM, Murphy LO, et al.: Physiological concentrations of insulin augment pancreatic cancer cell proliferation and glucose utilization by activating MAP kinase, PI3 kinase and enhancing GLUT-1 expression. Pancreas 2000;21:310–320.PubMedGoogle Scholar
  117. 117.
    Balaz P, Friess H, Buchler MW: Growth factors in pancreatic health and disease. Pancreatology 2001;1:343–355.PubMedGoogle Scholar
  118. 118.
    Nagasao J, Yoshioka K, Amasaki H, et al.: Expression of nestin and IGF-1 in rat pancreas after streptozotocin administration. Anat Histol Embryol 2004;33:1–4.PubMedGoogle Scholar
  119. 119.
    Karna E, Surazynski A, Orlowski K, et al.: Serum and tissue level of insulin-like growth factor-I (IGF-I) and IGF-I binding proteins as an index of pancreatitis and pancreatic cancer. Int J Exp Pathol 2002;83:239–245.PubMedGoogle Scholar
  120. 120.
    Tanaka M: Important clues to the diagnosis of pancreatic cancer. Rocz Akad Med Bialymst 2005;50:69–72.PubMedGoogle Scholar
  121. 121.
    Fujii T, Ishikawa T, Kanazumi N, et al.: Analysis of clinicopathological features and predictors of malignancy in intraductal papillary mucinous neoplasms of the pancreas. Hepatogastroenterology 2007;54:272–277.PubMedGoogle Scholar
  122. 122.
    Geary J, Sasieni P, Houlston R, et al.: Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). Fam Cancer 2008;7:163–172.PubMedGoogle Scholar
  123. 123.
    Al-Sukhni W, Rothenmund H, Eppel Borgida A, et al.: Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet 2008;124:271–278.PubMedGoogle Scholar
  124. 124.
    Lynch HT, Fusaro RM, Lynch JF, et al.: Pancreatic cancer and the FAMMM syndrome. Fam Cancer 2008;7:103–112.PubMedGoogle Scholar
  125. 125.
    Hearle N, Schumacher V, Menko FH, et al.: Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 2006;12:3209–3215.PubMedGoogle Scholar
  126. 126.
    Birch JM, Alston RD, McNally RJ, et al.: Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 2001;20:4621–4628.PubMedGoogle Scholar
  127. 127.
    Su Y, Swift M: Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med 2000;133:770–778.PubMedGoogle Scholar
  128. 128.
    Olsen JH, Hahnemann JM, Borresen-Dale AL, et al.: Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst 2001;93:121–127.PubMedGoogle Scholar
  129. 129.
    Rosenberg PS, Alter BP, Ebell W: Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica 2008;93:511–517.PubMedGoogle Scholar
  130. 130.
    Hazra A, Chanock S, Giovannucci E, et al.: Large-scale evaluation of genetic variants in candidate genes for colorectal cancer risk in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Cancer Epidemiol Biomarkers Prev 2008;17:311–319.PubMedGoogle Scholar
  131. 131.
    Jiao L, Chang P, Firozi PF, et al.: Polymorphisms of phase II xenobiotic-metabolizing and DNA repair genes and in vitro N-ethyl-N-nitrosourea-induced O6-ethylguanine levels in human lymphocytes. Mutation Res 2007;627:146–157.PubMedGoogle Scholar
  132. 132.
    Hung RJ, Hall J, Brennan P, et al.: Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 2005;162:925–942.PubMedGoogle Scholar
  133. 133.
    Jiao L, Hassan MM, Bondy ML, et al.: The XPD Asp312Asn and Lys751Gln polymorphisms, corresponding haplotype, and pancreatic cancer risk. Cancer Lett 2007;245:61–68.PubMedGoogle Scholar
  134. 134.
    Manuguerra M, Saletta F, Karagas MR, et al.: XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am J Epidemiol 2006;164:297–302.PubMedGoogle Scholar
  135. 135.
    Duell EJ, Holly EA, Bracci PM, et al.: A population-based, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk. J Natl Cancer Inst 2002;94:297–306.PubMedGoogle Scholar
  136. 136.
    Li D, Jiao L, Li Y, et al.: Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis 2006;27:103–111.PubMedGoogle Scholar
  137. 137.
    Agundez JA: Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 2004;5:211–224.PubMedGoogle Scholar
  138. 138.
    Agundez JA: Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab 2008;9:520–531.PubMedGoogle Scholar
  139. 139.
    Li D, Ahmed M, Li Y, et al.: 5,10-Methylenetetrahydrofolate reductase polymorphisms and the risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2005;14:1470–1476.PubMedGoogle Scholar
  140. 140.
    Mao R, Fan Y, Jin Y, et al.: Methylenetetrahydrofolate reductase gene polymorphisms and lung cancer: a meta-analysis. J Hum Genet 2008;53:340–348.PubMedGoogle Scholar
  141. 141.
    Ohnami S, Sato Y, Yoshimura K, et al.: His595Tyr polymorphism in the methionine synthase reductase (MTRR) gene is associated with pancreatic cancer risk. Gastroenterology 2008;135:477–488.PubMedGoogle Scholar
  142. 142.
    Sharp L, Little J: Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 2004;159:423–443.PubMedGoogle Scholar
  143. 143.
    Yang M, Sun T, Wang L, et al.: Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin Cancer Res 2008;14:3230–3236.PubMedGoogle Scholar
  144. 144.
    Sun T, Miao X, Zhang X, et al.: Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 2004;96:1030–1036.PubMedGoogle Scholar
  145. 145.
    Bethke L, Sullivan K, Webb E, et al.: The common D302H variant of CASP8 is associated with risk of glioma. Cancer Epidemiol Biomarkers Prev 2008;17:987–989.PubMedGoogle Scholar
  146. 146.
    Masamune A, Kume K, Shimosegawa T: Differential roles of the SPINK1 gene mutations in alcoholic and nonalcoholic chronic pancreatitis. J Gastroenterol 2007;42Suppl 17:135–140.PubMedGoogle Scholar
  147. 147.
    Cohn JA, Neoptolemos JP, Feng J, et al.: Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers. Hum Mutat 2005;26:303–307.PubMedGoogle Scholar
  148. 148.
    Neglia JP, FitzSimmons SC, Maisonneuve P, et al.: The risk of cancer among patients with cystic fibrosis. Cystic fibrosis and cancer study group. N Engl J Med 1995;332:494–499.PubMedGoogle Scholar
  149. 149.
    Nejentsev S, Howson JM, Walker NM, et al.: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007;450:887–892.PubMedGoogle Scholar
  150. 150.
    Madeleine MM, Johnson LG, Smith AG, et al.: Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res 2008;68:3532–3539.PubMedGoogle Scholar
  151. 151.
    Ockenga J, Vogel A, Teich N, et al.: UDP glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer. Gastroenterology 2003;124:1802–1808.PubMedGoogle Scholar
  152. 152.
    te Morsche RH, Drenth JP, Truninger K, et al.: UGT1A7 polymorphisms in chronic pancreatitis: an example of genotyping pitfalls. Pharmacogenomics J 2008;8:34–41.PubMedGoogle Scholar
  153. 153.
    Duell EJ, Casella DP, Burk RD, et al.: Inflammation, genetic polymorphisms in proinflammatory genes TNF-A, RANTES, and CCR5, and risk of pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2006;15:726–731.PubMedGoogle Scholar
  154. 154.
    Zhang J, Dou C, Song Y, et al.: Polymorphisms of tumor necrosis factor-alpha are associated with increased susceptibility to gastric cancer: a meta-analysis. J Hum Genet 2008;53:479–489.PubMedGoogle Scholar
  155. 155.
    Liou JM, Lin JT, Huang SP, et al.: RANTES-403 polymorphism is associated with reduced risk of gastric cancer in women. J Gastroenterol 2008;43:115–123.PubMedGoogle Scholar
  156. 156.
    Knudson AG, Jr.: Retinoblastoma: a prototypic hereditary neoplasm. Semin Oncol 1978;5:57–60.PubMedGoogle Scholar
  157. 157.
    Ollikainen M, Hannelius U, Lindgren CM, et al.: Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene 2007;26:4541–4549.PubMedGoogle Scholar
  158. 158.
    Seki M, Tanaka K, Kikuchi-Yanoshita R, et al.: Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum Genet 1992;89:298–300.PubMedGoogle Scholar
  159. 159.
    Willems AJ, Dawson SJ, Samaratunga H, et al.: Loss of heterozygosity at the BRCA2 locus detected by multiplex ligation-dependent probe amplification is common in prostate cancers from men with a germline BRCA2 mutation. Clin Cancer Res 2008;14:2953–2961.PubMedGoogle Scholar
  160. 160.
    Scott D, Barber JB, Levine EL, et al.: Radiation-induced micronucleus induction in lymphocytes identifies a high frequency of radiosensitive cases among breast cancer patients: a test for predisposition? Br J Cancer 1998;77:614–620.PubMedGoogle Scholar
  161. 161.
    Parast MM, Otey CA: Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 2000;150:643–656.PubMedGoogle Scholar
  162. 162.
    Salaria SN, Illei P, Sharma R, et al.: Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther 2007;6:324–328.PubMedGoogle Scholar
  163. 163.
    Greer JB, Whitcomb DC: Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut 2007;56:601–605.PubMedGoogle Scholar
  164. 164.
    Berwick M, Satagopan JM, Ben-Porat L, et al.: Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 2007;67:9591–9596.PubMedGoogle Scholar
  165. 165.
    Bugni JM, Han J, Tsai MS, et al.: Genetic association and functional studies of major polymorphic variants of MGMT. DNA repair 2007;6:1116–1126.PubMedGoogle Scholar
  166. 166.
    Malats N, Casals T, Porta M, et al.: Cystic fibrosis transmembrane regulator (CFTR) DeltaF508 mutation and 5T allele in patients with chronic pancreatitis and exocrine pancreatic cancer. PANKRAS II Study Group. Gut 2001;48:70–74.PubMedGoogle Scholar
  167. 167.
    Antoniou AC, Cunningham AP, Peto J, et al.: The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008;98:1457–1466.PubMedGoogle Scholar
  168. 168.
    Hassan MM, Bondy ML, Wolff RA, et al.: Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol 2007;102:2696–2707.PubMedGoogle Scholar
  169. 169.
    Hsu FC, Lindstrom S, Sun J, et al.: A multigenic approach to evaluating prostate cancer risk in a systematic replication study. Cancer Genet Cytogenet 2008;183:94–98.PubMedGoogle Scholar
  170. 170.
    Vucic EA, Brown CJ, Lam WL: Epigenetics of cancer progression. Pharmacogenomics 2008;9:215–234.PubMedGoogle Scholar
  171. 171.
    Sato N, Maitra A, Fukushima N, et al.: Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003;63:4158–4166.PubMedGoogle Scholar
  172. 172.
    Chen J, Li D, Wei C, et al.: Aurora-A and p16 polymorphisms contribute to an earlier age at diagnosis of pancreatic cancer in Caucasians. Clin Cancer Res 2007;13:3100–3104.PubMedGoogle Scholar
  173. 173.
    Sahin-Toth M: The pathobiochemistry of hereditary pancreatitis: studies on recombinant human cationic trypsinogen. Pancreatology 2001;1:461–465.PubMedGoogle Scholar
  174. 174.
    Sahin-Toth M, Toth M: Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun 2000;278:286–289.PubMedGoogle Scholar
  175. 175.
    Sahin-Toth M: Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J Biol Chem 2000;275:22750–22755.PubMedGoogle Scholar
  176. 176.
    Hirata I, Murano M, Ishiguro T, et al.: HLA genotype and development of gastric cancer in patients with Helicobacter pylori infection. Hepatogastroenterology 2007;54:990–994.PubMedGoogle Scholar
  177. 177.
    Ramezani A, Hasanjani Roshan MR, Kalantar E, et al.: Association of human leukocyte antigen polymorphism with outcomes of hepatitis B virus infection. J Gastroenterol Hepatol 2008;23:1716–1721.Google Scholar
  178. 178.
    Hassan MM, Li D, El-Deeb AS, et al.: Association between hepatitis B virus and pancreatic cancer. J Clin Oncol 2008;26:4557–4562.PubMedGoogle Scholar
  179. 179.
    Larsson SC, Permert J, Hakansson N, et al.: Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer 2005;93:1310–1315.PubMedGoogle Scholar
  180. 180.
    Carlson C, Greenhalf W, Brentnall TA: Screening of hereditary pancreatic cancer families. In The Pancreas: An Integrated Textbook of Basic Science, Medicine and Surgery. Beger, H-G Buchler, M Kozarek, R et al.: Oxford: Blackwell 2008:636–642.Google Scholar
  181. 181.
    Canto MI, Goggins M, Hruban RH, et al.: Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006;4:766–781; quiz 665.PubMedGoogle Scholar
  182. 182.
    Maire F, Hammel P, Terris B, et al.: Intraductal papillary and mucinous pancreatic tumour: a new extracolonic tumour in familial adenomatous polyposis. Gut 2002;51:446–449.PubMedGoogle Scholar
  183. 183.
    Hemminki A, Markie D, Tomlinson I, et al.: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998;391:184–187.PubMedGoogle Scholar
  184. 184.
    Jenne DE, Reimann H, Nezu J, et al.: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998;18:38–43.PubMedGoogle Scholar
  185. 185.
    Boudeau J, Sapkota G, Alessi DR: LKB1, a protein kinase regulating cell proliferation and polarity. FEBS letters 2003;546:159–165.PubMedGoogle Scholar
  186. 186.
    Woods A, Johnstone SR, Dickerson K, et al.: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003;13:2004–2008.PubMedGoogle Scholar
  187. 187.
    Forcet C, Etienne-Manneville S, Gaude H, et al.: Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet 2005;14:1283–1292.PubMedGoogle Scholar
  188. 188.
    Ossipova O, Bardeesy N, DePinho RA, et al.: LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat Cell Biol 2003;5:889–894.PubMedGoogle Scholar
  189. 189.
    Lin-Marq N, Borel C, Antonarakis SE: Peutz-Jeghers LKB1 mutants fail to activate GSK-3beta, preventing it from inhibiting Wnt signaling. Mol Genet Genomics 2005;273:184–196.PubMedGoogle Scholar
  190. 190.
    Mehenni H, Lin-Marq N, Buchet-Poyau K, et al.: LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet 2005;14:2209–2219.PubMedGoogle Scholar
  191. 191.
    Bonaccorsi S, Mottier V, Giansanti MG, et al.: The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development 2007;134:2183–2193.PubMedGoogle Scholar
  192. 192.
    Iyanagi T: Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 2007;260:35–112.PubMedGoogle Scholar
  193. 193.
    Giannitrapani L, Soresi M, La Spada E, et al.: Sex hormones and risk of liver tumor. Ann NY Acad Sci 2006;1089:228–236.PubMedGoogle Scholar
  194. 194.
    Lowenfels AB, Maisonneuve P, Whitcomb DC, et al.: Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. Jama 2001;286:169–170.PubMedGoogle Scholar
  195. 195.
    Hoffmann D, Hoffmann I: The changing cigarette, 1950–1995. J Toxicol Environ Health 1997;50:307–364.PubMedGoogle Scholar
  196. 196.
    Guengerich FP: Metabolism of chemical carcinogens. Carcinogenesis 2000;21:345–351.PubMedGoogle Scholar
  197. 197.
    Wang M, Abbruzzese JL, Friess H, et al.: DNA adducts in human pancreatic tissues and their potential role in carcinogenesis. Cancer Res 1998;58:38–41.PubMedGoogle Scholar
  198. 198.
    Hecht SS: DNA adduct formation from tobacco-specific N-nitrosamines. Mutation Res 1999;424:127–142.PubMedGoogle Scholar
  199. 199.
    Bieche I, Narjoz C, Asselah T, et al.: Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 2007;17:731–742.PubMedGoogle Scholar
  200. 200.
    Nishimura M, Naito S: Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet 2006;21:357–374.PubMedGoogle Scholar
  201. 201.
    Ulrich AB, Schmied BM, Standop J, et al.: Differences in the expression of glutathione S-transferases in normal pancreas, chronic pancreatitis, secondary chronic pancreatitis, and pancreatic cancer. Pancreas 2002;24:291–297.PubMedGoogle Scholar
  202. 202.
    Alexandrov K, Cascorbi I, Rojas M, et al.: CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers’ lung: comparison with aromatic/hydrophobic adduct formation. Carcinogenesis 2002;23:1969–1977.PubMedGoogle Scholar
  203. 203.
    Rojas M, Cascorbi I, Alexandrov K, et al.: Modulation of benzo[a]pyrene diolepoxide-DNA adduct levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism. Carcinogenesis 2000;21:35–41.PubMedGoogle Scholar
  204. 204.
    Carlsten C, Sagoo GS, Frodsham AJ, et al.: Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol 2008;167:759–774.PubMedGoogle Scholar
  205. 205.
    White DL, Li D, Nurgalieva Z, et al.: Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am J Epidemiol 2008;167:377–389.PubMedGoogle Scholar
  206. 206.
    Liu G, Ghadirian P, Vesprini D, et al.: Polymorphisms in GSTM1, GSTT1 and CYP1A1 and risk of pancreatic adenocarcinoma. Br J Cancer 2000;82:1646–1649.PubMedGoogle Scholar
  207. 207.
    Standop J, Schneider M, Ulrich A, et al.: Differences in immunohistochemical expression of xenobiotic-metabolizing enzymes between normal pancreas, chronic pancreatitis and pancreatic cancer. Toxicol Pathol 2003;31:506–513.PubMedGoogle Scholar
  208. 208.
    Standop J, Ulrich AB, Schneider MB, et al.: Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas. Pancreatology 2002;2:510–518.PubMedGoogle Scholar
  209. 209.
    Standop J, Schneider MB, Ulrich A, et al.: The pattern of xenobiotic-metabolizing enzymes in the human pancreas. J Toxicol Environ Health A 2002;65:1379–1400.PubMedGoogle Scholar
  210. 210.
    Lynch HT, Lanspa SJ, Fitzgibbons RJ, Jr., et al.: Familial pancreatic cancer (Part 1): Genetic pathology review. Nebr Med J 1989;74:109–112.PubMedGoogle Scholar
  211. 211.
    Greenhalf W, Malats N, Nilsson M, et al.: International Registries of Families at High Risk of Pancreatic Cancer. Pancreatology 2008;8:558–565.PubMedGoogle Scholar
  212. 212.
    Klein AP, Beaty TH, Bailey-Wilson JE, et al.: Evidence for a major gene influencing risk of pancreatic cancer. Genet Epidemiol 2002;23:133–149.PubMedGoogle Scholar
  213. 213.
    Rulyak SJ, Lowenfels AB, Maisonneuve P, et al.: Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 2003;124:1292–1299.PubMedGoogle Scholar
  214. 214.
    Fernandez E, La Vecchia C, D’Avanzo B, et al.: Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev 1994;3:209–212.PubMedGoogle Scholar
  215. 215.
    Tersmette AC, Petersen GM, Offerhaus GJ, et al.: Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 2001;7:738–744.PubMedGoogle Scholar
  216. 216.
    Eberle MA, Pfutzer R, Pogue-Geile KL, et al.: A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32–34. Am J Hum Genet 2002;70:1044–1048.PubMedGoogle Scholar
  217. 217.
    Earl J, Yan L, Vitone LJ, et al.: Evaluation of the 4q32–34 locus in European familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2006;15:1948–1955.PubMedGoogle Scholar
  218. 218.
    Klein AP, de Andrade M, Hruban RH, et al.: Linkage analysis of chromosome 4 in families with familial pancreatic cancer. Cancer Biol Ther 2007;6:320–323.PubMedGoogle Scholar
  219. 219.
    McFaul C, Greenhalf W, Earl J, et al.: Anticipation in familial pancreatic cancer. Gut 2006;55:252–258.PubMedGoogle Scholar
  220. 220.
    Zhang K, Qin Z, Chen T, et al.: HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics 2005;21:131–134.PubMedGoogle Scholar
  221. 221.
    Lynch HT, Harris RE, Guirgis HA, et al.: Early age of onset and familial breast cancer. Lancet 1976;2:626–627.PubMedGoogle Scholar
  222. 222.
    Bergmann F, Aulmann S, Wente MN, et al.: Molecular characterisation of pancreatic ductal adenocarcinoma in patients under 40. J Clin Pathol 2006;59:580–584.PubMedGoogle Scholar
  223. 223.
    Chen J, Killary AM, Sen S, et al.: Polymorphisms of p21 and p27 jointly contribute to an earlier age at diagnosis of pancreatic cancer. Cancer Lett 2008.Google Scholar
  224. 224.
    Chen J, Anderson M, Misek DE, et al.: Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 2007.Google Scholar
  225. 225.
    Rieder H, Sina-Frey M, Ziegler A, et al.: German national case collection of familial pancreatic cancer – clinical-genetic analysis of the first 21 families. Onkologie 2002;25:262–266.PubMedGoogle Scholar
  226. 226.
    Li D, Li Y, Jiao L, et al.: Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer 2007;120:1748–1754.PubMedGoogle Scholar
  227. 227.
    Okazaki T, Jiao L, Chang P, et al.: Single-nucleotide polymorphisms of DNA damage response genes are associated with overall survival in patients with pancreatic cancer. Clin Cancer Res 2008;14:2042–2048.PubMedGoogle Scholar
  228. 228.
    Bryant HE, Schultz N, Thomas HD, et al.: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005;434:913–917.PubMedGoogle Scholar
  229. 229.
    Plon SE, Eccles DM, Easton D, et al.: Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008;29:1282–1291.PubMedGoogle Scholar
  230. 230.
    Ulrich CD: Pancreatic cancer in hereditary pancreatitis: consensus guidelines for prevention, screening and treatment. Pancreatology 2001;1:416–422.PubMedGoogle Scholar
  231. 231.
    Brand RE, Lerch MM, Rubinstein WS, et al.: Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 2007;56:1460–1469.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • William Greenhalf
    • 1
  • John Neoptolemos
    • 1
  1. 1.Division of Surgery and OncologyRoyal Liverpool University HospitalLiverpool GAUK

Personalised recommendations