Principles and Applications of Proteomics in Pancreatic Cancer

  • Sarah Tonack
  • John Neoptolemos
  • Eithne Costello
Reference work entry


The proteome is the complete set of proteins expressed in a subcellular or cellular compartment, tissue, biological fluid, or organism. It is estimated that there are some 250,000–300,000 human proteins, encoded from 20,000 to 25,000 genes. The discrepancy between the number of genes and the number of proteins is due in part to alternative gene splicing and post-translational modification of proteins.

The proteome is dynamic and changes in response to both intracellular and extracellular signaling. Therefore, comparisons of protein profiles from normal and malignant pancreatic cells, or cells from distinct histological stages that occur during the development of pancreatic cancer provide opportunities for further understanding the pathogenesis of this tumor type. Moreover, such analyses as well as detailed proteomic studies of body fluids, such as pancreatic juice, serum, plasma or urine will likely facilitate the elucidation of new biomarkers for the diagnosis, or management of this disease.

Although proteomic technologies have been rapidly advancing for a number of years, the last decade in particular has seen developments that enable the simultaneous study of large numbers of proteins in a single experiment or set of experiments. In this chapter, the proteomic-based approaches that are most commonly used to analyze pancreatic cancer specimens are reviewed. The range of sample types that have been subjected to analysis, including samples from animal models of pancreatic cancer are discussed, along with examples of proteins that have been identified in these studies.


Pancreatic Cancer Chronic Pancreatitis Pancreatic Juice Pancreatic Cancer Cell Line Pancreatic Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aspinall-O’Dea M, Costello E: The pancreatic cancer proteome – recent advances and future promise. Proteomics Clin Appl 2007;1(9):1066–1079.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen R, Pan S, Aebersold R, Brentnall T: Proteomics studies of pancreatic cancer. Proteomics Clin Appl 2007;1(12):1582–1591.CrossRefPubMedGoogle Scholar
  3. 3.
    Grantzdorffer I, Carl-McGrath S, Ebert MP, Rocken C: Proteomics of pancreatic cancer. Pancreas 2008;36(4):329–336.CrossRefPubMedGoogle Scholar
  4. 4.
    Hanash SM, Pitteri SJ, Faca VM: Mining the plasma proteome for cancer biomarkers. Nature 2008;452(7187):571–579.CrossRefPubMedGoogle Scholar
  5. 5.
    Loperfido S, Angelini G, Benedetti G, et al.: Major early complications from diagnostic and therapeutic ERCP: a prospective multicenter study. Gastrointest Endosc 1998;48(1):1–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Suissa A, Yassin K, Lavy A, et al.: Outcome and early complications of ERCP: a prospective single center study. Hepatogastroenterology 2005;52(62):352–355.PubMedGoogle Scholar
  7. 7.
    Vandervoort J, Soetikno RM, Tham TC, et al.: Risk factors for complications after performance of ERCP. Gastrointest Endosc 2002;56(5):652–656.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen YI, Donohoe S, et al.: Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 2005;129(4):1187–1197.CrossRefPubMedGoogle Scholar
  9. 9.
    Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, et al.: Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 2005;129(5):1454–1463.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu L, Evers S, Lu ZH, Shen Y, Chen J: Two-dimensional protein database of human pancreas. Electrophoresis 2004;25(3):512–518.CrossRefPubMedGoogle Scholar
  11. 11.
    Lu Z, Hu L, Evers S, Chen J, Shen Y: Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics 2004;4(12):3975–3988.CrossRefPubMedGoogle Scholar
  12. 12.
    Shen J, Person MD, Zhu J, Abbruzzese JL, Li D: Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 2004;64(24):9018–9026.CrossRefPubMedGoogle Scholar
  13. 13.
    Sheikh AA, Vimalachandran D, Thompson CC, et al.: The expression of S100A8 in pancreatic cancer-associated monocytes is associated with the Smad4 status of pancreatic cancer cells. Proteomics 2007;7(11):1929–1940.CrossRefPubMedGoogle Scholar
  14. 14.
    Shekouh A, Thompson C, Prime W: et al.: Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 2003;3(10):1988–2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Gronborg M, Kristiansen TZ, Iwahori A, et al.: Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006;5(1):157–171.PubMedGoogle Scholar
  16. 16.
    Mauri P, Scarpa A, Nascimbeni AC, et al.: Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 2005;19(9):1125–1127. doi:10.1096/fj.04–3000fje.PubMedGoogle Scholar
  17. 17.
    Ristorcelli E, Beraud E, Verrando P, et al.: Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008;22(9):3358–3369.CrossRefPubMedGoogle Scholar
  18. 18.
    Kojima K, Asmellash S, Klug CA, Grizzle WE, Mobley JA, Christein JD: Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer. J Gastrointest Surg 2008;12(10):1683–1690.CrossRefPubMedGoogle Scholar
  19. 19.
    Faca VM, Song KS, Wang H, et al.: A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008;5(6):e123.CrossRefPubMedGoogle Scholar
  20. 20.
    Hingorani SR, Petricoin EF, Maitra A: et al.: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4(6):437–450.CrossRefPubMedGoogle Scholar
  21. 21.
    Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P: Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 1979;5(6):957–971.CrossRefPubMedGoogle Scholar
  22. 22.
    Koprowski H, Herlyn M, Steplewski Z, Sears HF: Specific antigen in serum of patients with colon carcinoma. Science (New York, NY) 1981;212(4490):53–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Locker GY, Hamilton S, Harris J, et al.: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006;24(33):5313–5327.CrossRefPubMedGoogle Scholar
  24. 24.
    Goonetilleke KS, Siriwardena AK: Systematic review of carbohydrate antigen (CA 19–9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 2007;33(3):266–270.CrossRefPubMedGoogle Scholar
  25. 25.
    Alexakis N, Halloran C, Raraty M, Ghaneh P, Sutton R, Neoptolemos JP: Current standards of surgery for pancreatic cancer. Br J Surg 2004;91(11):1410–1427.CrossRefPubMedGoogle Scholar
  26. 26.
    Yan L, Tonack S, Smith R, et al.: Confounding effect of obstructive jaundice in the interpretation of proteomic plasma profiling data for pancreatic cancer. J Proteome Res 2009;8(1):142–148.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen R, Brentnall TA, Pan S, et al.: Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol Cell Proteomics 2007;6(8):1331–1342.CrossRefPubMedGoogle Scholar
  28. 28.
    Thompson ST, Cass KH, Stellwagen E: Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci USA 1975;72(2):669–672.CrossRefPubMedGoogle Scholar
  29. 29.
    Miribel L, Gianazza E, Arnaud P: The use of dye-ligand affinity chromatography for the purification of non-enzymatic human plasma proteins. J Biochem Biophys Methods 1988;16(1):1–15.CrossRefPubMedGoogle Scholar
  30. 30.
    Leatherbarrow RJ, Dean PD: Studies on the mechanism of binding of serum albumins to immobilized cibacron blue F3G A. Biochem J 1980;189(1):27–34.PubMedGoogle Scholar
  31. 31.
    Sjobring U, Bjorck L, Kastern W: Streptococcal protein G. Gene structure and protein binding properties. J Biol Chem 1991;266(1):399–405.PubMedGoogle Scholar
  32. 32.
    Wang YY, Cheng P, Chan DW: A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 2003;3(3):243–248.CrossRefPubMedGoogle Scholar
  33. 33.
    Govorukhina NI, Keizer-Gunnink A, van der Zee AGJ, de Jong S, de Bruijn HWA, Bischoff R: Sample preparation of human serum for the analysis of tumor markers: Comparison of different approaches for albumin and [gamma]-globulin depletion. J Chromatogr A 2003;1009(1–2):171–178.CrossRefPubMedGoogle Scholar
  34. 34.
    Sennels L, Salek M, Lomas L, Boschetti E, Righetti PG, Rappsilber J: Proteomic analysis of human blood serum using peptide library beads. J Proteome Res 2007;6(10):4055–4062.CrossRefPubMedGoogle Scholar
  35. 35.
    O'Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975;250(10):4007–4021.PubMedGoogle Scholar
  36. 36.
    Gorg A, Obermaier C, Boguth G, et al.: The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000;21(6):1037–1053.CrossRefPubMedGoogle Scholar
  37. 37.
    Harris LR, Churchward MA, Butt RH, Coorssen JR: Assessing detection methods for gel-based proteomic analyses. J Proteome Res 2007;6(4):1418–1425.CrossRefPubMedGoogle Scholar
  38. 38.
    Riederer BM: Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. J Proteomics 2008;71(2):231–244.CrossRefPubMedGoogle Scholar
  39. 39.
    Unlu M, Morgan ME, Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18(11):2071–2077.CrossRefPubMedGoogle Scholar
  40. 40.
    Tian M, Cui YZ, Song GH, et al.: Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 2008;8:241.CrossRefPubMedGoogle Scholar
  41. 41.
    Bloomston M, Zhou JX, Rosemurgy AS, Frankel W, Muro-Cacho CA, Yeatman TJ: Fibrinogen {gamma} Overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res 2006;66(5):2592–2599.CrossRefPubMedGoogle Scholar
  42. 42.
    Lin Y, Goedegebuure PS, Tan MCB, et al.: Proteins associated with disease and clinical course in pancreas cancer: a proteomic analysis of plasma in surgical patients. J Proteome Res 2006;5(9):2169–2176.CrossRefPubMedGoogle Scholar
  43. 43.
    Deng R, Lu Z, Chen Y, Zhou L, Lu X: Plasma proteomic analysis of pancreatic cancer by 2-dimensional gel electrophoresis. Pancreas 2007;34(3):310–317.CrossRefPubMedGoogle Scholar
  44. 44.
    Shiio Y, Aebersold R: Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 2006;1(1):139–145.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen R, Yi EC, Donohoe S, et al.: Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 2005;129(4):1187–1197.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen R, Pan S, Cooke K, et al.: Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas 2007;34(1):70–79.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen R, Pan S, Yi EC, et al.: Quantitative proteomic profiling of pancreatic cancer juice. Proteomics 2006;6(13):3871–3879.CrossRefPubMedGoogle Scholar
  48. 48.
    Ong SE, Foster LJ, Mann M: Mass spectrometric-based approaches in quantitative proteomics. Methods (San Diego, Calif) 2003;29(2):124–130.CrossRefPubMedGoogle Scholar
  49. 49.
    Roboz J: Mass spectrometry in diagnostic oncoproteomics. Cancer Invest 2005;23(5):465–478.PubMedGoogle Scholar
  50. 50.
    Merchant M, Weinberger SR: Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000;21(6):1164–1177.CrossRefPubMedGoogle Scholar
  51. 51.
    Rosty C, Christa L, Kuzdzal S, et al.: Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62(6):1868–1875.PubMedGoogle Scholar
  52. 52.
    Sasaki K, Sato K, Akiyama Y, Yanagihara K, Oka M, Yamaguchi K: Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 2002;62(17):4894–4898.PubMedGoogle Scholar
  53. 53.
    Koopmann J, Zhang Z, White N, et al.: Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry 10.1158/1078–0432.CCR-1167-3. Clin Cancer Res 2004;10(3):860–868.CrossRefPubMedGoogle Scholar
  54. 54.
    Song J, Patel M, Rosenzweig CN, et al.: Quantification of fragments of human serum inter-alpha-trypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based immunoassay. Clin Chem 2006;52(6):1045–1053.CrossRefPubMedGoogle Scholar
  55. 55.
    Ehmann M, Felix K, Hartmann D, et al.: Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas 2007;34(2):205–214.CrossRefPubMedGoogle Scholar
  56. 56.
    Scarlett CJ, Samra JS, Xue A, Baxter RC, Smith RC: Classification of pancreatic cystic lesions using SELDI-TOF mass spectrometry. ANZ J Surg 2007;77(8):648–653.CrossRefPubMedGoogle Scholar
  57. 57.
    Sahin U, Tureci O, Schmitt H, et al.: Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995;92(25):11810–11813.CrossRefPubMedGoogle Scholar
  58. 58.
    Scanlan MJ, Chen YT, Williamson B, et al.: Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 1998;76(5):652–658.CrossRefPubMedGoogle Scholar
  59. 59.
    Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y: Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 2001;281(4):936–944.CrossRefPubMedGoogle Scholar
  60. 60.
    Klade CS, Voss T, Krystek E, et al.: Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 2001;1(7):890–898.CrossRefPubMedGoogle Scholar
  61. 61.
    Seliger B, Kellner R: Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics 2002;2(12):1641–1651.CrossRefPubMedGoogle Scholar
  62. 62.
    Hong SH, Misek DE, Wang H, et al.: An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 2004;64(15):5504–5510.CrossRefPubMedGoogle Scholar
  63. 63.
    Tomaino B, Cappello P, Capello M, et al.: Autoantibody signature in human ductal pancreatic adenocarcinoma. J Proteome Res 2007;6(10):4025–4031.CrossRefPubMedGoogle Scholar
  64. 64.
    Spurrier B, Honkanen P, Holway A, et al.: Protein and lysate array technologies in cancer research. Biotechnol Adv 2008;26(4):361–369.CrossRefPubMedGoogle Scholar
  65. 65.
    Orchekowski R, Hamelinck D, Li L, et al.: Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 2005;65(23):11193–11202.CrossRefPubMedGoogle Scholar
  66. 66.
    Hamelinck D, Zhou H, Li L, et al.: Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics 2005;4(6):773–784.CrossRefPubMedGoogle Scholar
  67. 67.
    Ingvarsson J, Wingren C, Carlsson A, et al.: Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 2008;8(11):2211–2219.CrossRefPubMedGoogle Scholar
  68. 68.
    Mendes KN, Nicorici D, Cogdell D, et al.: Analysis of signaling pathways in 90 cancer cell lines by protein lysate array. J Proteome Res 2007;6(7):2753–2767.CrossRefPubMedGoogle Scholar
  69. 69.
    Rai AJ, Vitzthum F: Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics. Expert Rev Proteomics 2006;3(4):409–426.CrossRefPubMedGoogle Scholar
  70. 70.
    Ransohoff DF: Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005;5(2):142–149.CrossRefPubMedGoogle Scholar
  71. 71.
    Ransohoff DF: How to improve reliability and efficiency of research about molecular markers: roles of phases, guidelines, and study design. J Clin Epidemiol 2007;60(12):1205–1219.CrossRefPubMedGoogle Scholar
  72. 72.
    Ransohoff DF: The process to discover and develop biomarkers for cancer: a work in progress. J Natl Cancer Inst 2008;100(20):1419–1420.CrossRefPubMedGoogle Scholar
  73. 73.
    Gronborg M, Bunkenborg J, Kristiansen TZ, et al.: Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 2004;3(5):1042–1055.CrossRefPubMedGoogle Scholar
  74. 74.
    Simeone DM, Ji B, Banerjee M, et al.: CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 2007;34(4):436–443.CrossRefPubMedGoogle Scholar
  75. 75.
    Duxbury MS, Matros E, Clancy T, et al.: CEACAM6 is a novel biomarker in pancreatic adenocarcinoma and PanIN lesions. Ann Surg 2005;241(3):491–496.CrossRefPubMedGoogle Scholar
  76. 76.
    Thompson CC, Ashcroft FJ, Patel S, et al.: Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 2007;56(1):95–106.CrossRefPubMedGoogle Scholar
  77. 77.
    Koopmann J, Buckhaults P, Brown DA, et al.: Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res 2004;10(7):2386–2392.CrossRefPubMedGoogle Scholar
  78. 78.
    Roberts PF, Burns J: A histochemical study of mucins in normal and neoplastic human pancreatic tissue. J Pathol 1972;107(2):87–94.CrossRefPubMedGoogle Scholar
  79. 79.
    Balague C, Gambus G, Carrato C, et al.: Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology 1994;106(4):1054–1061.PubMedGoogle Scholar
  80. 80.
    Jhala N, Jhala D, Vickers SM, et al.: Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol 2006;126(4):572–579.CrossRefPubMedGoogle Scholar
  81. 81.
    Koopmann J, Fedarko NS, Jain A, et al.: Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2004;13(3):487–491.PubMedGoogle Scholar
  82. 82.
    Satomura Y, Sawabu N, Mouri I, et al.: Measurement of serum PSP/reg-protein concentration in various diseases with a newly developed enzyme-linked immunosorbent assay. J Gastroenterol 1995;30(5):643–650.CrossRefPubMedGoogle Scholar
  83. 83.
    Ohuchida K, Mizumoto K, Egami T, et al.: S100P is an early developmental marker of pancreatic carcinogenesis. Clin Cancer Res 2006;12(18):5411–5416.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sarah Tonack
    • 1
  • John Neoptolemos
    • 1
  • Eithne Costello
    • 1
  1. 1.Division of Surgery and Oncology, Royal Liverpool University HospitalUniversity of Liverpool UK

Personalised recommendations